
User Manual
SAP Business One 9.1, 9.2, 9.3, version for SAP HANA
Document Version: 1.15 – 2019-12-02

CUSTOMER

Working with SAP Business One Service Layer
All Countries

2
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Typographic Conventions

Typographic Conventions

Type Style Description

Example Words or characters quoted from the screen. These include field names, screen titles,
pushbuttons labels, menu names, menu paths, and menu options.
Textual cross-references to other documents.

Example Emphasized words or expressions.

EXAMPLE Technical names of system objects. These include report names, program names,
transaction codes, table names, and key concepts of a programming language when they
are surrounded by body text, for example, SELECT and INCLUDE.

Example Output on the screen. This includes file and directory names and their paths, messages,
names of variables and parameters, source text, and names of installation, upgrade and
database tools.

Example Exact user entry. These are words or characters that you enter in the system exactly as
they appear in the documentation.

<Example> Variable user entry. Angle brackets indicate that you replace these words and characters
with appropriate entries to make entries in the system.

EXAMPLE Keys on the keyboard, for example, F2 or ENTER .

Working with SAP Business One Service Layer
Document History

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 3

Document History

Version Date Change

1.0 2014-06-27 The first release of SAP Business One Service Layer

1.1 2014-11-11 · SAP Business One service user
· Configuration by request
· Configuration options (Schema, SessionTimeout)
· User-defined schemas
· User-defined objects
· User-defined fields (metadata management)
· Retrieving individual properties
· Associations and navigation properties (Experimental)

1.2 2014-12-30 · Support OData version 4
· Metadata for UDF/UDT/UDO
· Updates for user-defined objects, user-defined fields and user-defined

tables

1.3 2015-03-19 · Use SLD server during logon
· Support $inlinecount in OData query
· Add the code samples for Service Layer versus DI API
· Add the limitations of Service Layer

1.4 2015-07-20 · Add Session in Login/Logout
· Add an example "Preview an Order" in Actions
· Add Cross Origin Resource Sharing (CORS)

1.5 2015-12-15 Add Single Sign-On

1.6 2016-03-04 Minor update for OBServer.

1.7 2016-05-04 · Add Create Entity with No Content
· Add Aggregation
· Add Attachments
· Add Item Image
· Add Cross Origin Resource Sharing

1.8 2016-07-28 · Support JavaScript Extension
· Support case-insensitive query
· Support query with grouping
· Support Cross-Joins
· Support allowed request header in CORS

4
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Document History

Version Date Change

1.9 2017-08-14 Support SAP Business One 9.3, version for SAP HANA

1.10 2018-01-15 · Support Semantic Layer Service
· Minor corrections

1.11 2018-02-09 · Support cancel/close entity for UDO
· Support row level filter

1.12 2018-12-04 Update Appendix II: Collection object naming difference

1.13 2019-03-13 Add back the example "Preview an Order" in Actions

1.14 2019-05-20 Add the Ping Pong API

1.15 2019-12-02 Add Employee Image

Working with SAP Business One Service Layer
Table of Contents

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 5

Table of Contents

1 Introduction.. 8
1.1 About This Document .. 8
1.2 Target Audience ... 8
1.3 About SAP Business One Service Layer .. 8

2 Getting Started ..9
2.1 System Requirements ... 9
2.2 Architecture Overview ... 9
2.3 Installing SAP Business One Service Layer ... 10

3 Consuming SAP Business One Service Layer .. 15
3.1 Login and Logout ... 16

3.1.1 Session ... 16
3.2 Single Sign-On (SSO) .. 18

3.2.1 SSO via PAOS .. 18
3.2.2 SSO via HTTP-POST ...20

3.3 Metadata Document .. 21
3.4 Service Document ... 23
3.5 Create/Retrieve/Update/Delete (CRUD) Operations ... 24

3.5.1 Creating Entities .. 24
3.5.2 Retrieving Entities ... 26
3.5.3 Updating Entities ... 27
3.5.4 Deleting Entities ... 28
3.5.5 Create Entity with No Content ... 29

3.6 Actions .. 29
3.7 Query Options .. 35

3.7.1 Get All Entities.. 36
3.7.2 Get Fields of an Entity ... 36
3.7.3 Query Properties of the Enumeration Type .. 36
3.7.4 Query Properties of the Datetime Type... 37
3.7.5 Query Properties of the Time Type .. 37
3.7.6 Paginate the Selected Orders .. 37
3.7.7 Aggregation.. 38
3.7.8 Grouping ... 43
3.7.9 Cross-Joins .. 45
3.7.10 Row-Level Filter ... 52

3.8 SAP Business One Semantic Layer View Exposure .. 55
3.8.1 Views Deployment ... 56
3.8.2 View Exposure Scope .. 56
3.8.3 View Exposure OData Version .. 57
3.8.4 Semantic Layer Service Root ... 57
3.8.5 Semantic Layer Service Metadata ... 58
3.8.6 Semantic Layer View Authorization .. 62
3.8.7 Semantic Layer View Query ... 63

6
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Table of Contents

3.8.8 Customized Views Exposure .. 70
3.8.9 Customized Views Query ... 72
3.8.10 Semantic Layer Basic Authentication ... 72

3.9 Batch Operations ... 73
3.9.1 Batch Request Method and URI... 73
3.9.2 Batch Request Headers .. 74
3.9.3 Batch Request Body ... 74
3.9.4 Change Sets... 75
3.9.5 Batch Request Sample Codes ... 76
3.9.6 Batch Response .. 77

3.10 Retrieving Individual Properties ... 80
3.11 Associations ... 82

3.11.1 Metadata Definitions of Associations and Navigation Properties 82
3.11.2 Retrieving navigation properties as entity .. 84
3.11.3 Retrieving navigation properties via $expand .. 84

3.12 User-Defined Schemas ... 85
3.13 User-Defined Fields (UDFs) .. 87

3.13.1 Managing Metadata of UDFs .. 88
3.13.2 CRUD Operations .. 90

3.14 User-defined Tables (UDTs) ..91
3.14.1 Managing Metadata of UDTs.. 92
3.14.2 CRUD Operations .. 92

3.15 User-Defined Objects (UDOs) .. 93
3.15.1 Managing Metadata of UDOs ... 94
3.15.2 Creating Entity for a UDO ... 98
3.15.3 Retrieving Entity for UDO ... 99
3.15.4 Updating Entity for UDO .. 101
3.15.5 Deleting Entity for UDO.. 101
3.15.6 Canceling/Closing Entity for UDO .. 101

3.16 Attachments .. 102
3.16.1 Setting up an Attachment Folder .. 103
3.16.2 Uploading an Attachment .. 104
3.16.3 Downloading Attachments ... 107
3.16.4 Updating Attachment ... 108

3.17 Item Image and Employee Image ...111
3.17.1 Setting up an Item Image Folder..111
3.17.2 Getting an Item Image or an Employee Image ...111
3.17.3 Updating or Uploading an Item Image ... 112
3.17.4 Deleting an Item Image .. 114

3.18 JavaScript Extension .. 114
3.18.1 JavaScript Parsing Engine ... 115
3.18.2 JavaScript Extension Framework ... 115
3.18.3 JavaScript Entry Function ... 116
3.18.4 JavaScript URL Mapping ... 117
3.18.5 JavaScript SDK ... 117
3.18.6 Logging ... 130
3.18.7 JavaScript SDK Generator Tool ... 130
3.18.8 JavaScript Deployment ... 131
3.18.9 Typical User Cases of Applying Script .. 133
3.18.10 Consume Script Service from .Net Application ... 136

Working with SAP Business One Service Layer
Table of Contents

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 7

3.19 Cross Origin Resource Sharing (CORS) .. 139
3.19.1 Enabling CORS ... 139
3.19.2 Enable to Configure Allowed Headers ... 139
3.19.3 CORS process .. 139

3.20 Ping Pong API ... 140

4 Configuring SAP Business One Service Layer ... 142
4.1 Configuration Options for Service Layer ... 142
4.2 Configuration by Request ... 144

5 Limitations ... 145
5.1 OData Protocol Implementation Limitations .. 145
5.2 Functional Limitations versus SAP Business One DI API ... 145

6 High Availability and Performance ... 146
6.1 High Availability and Load Balancing ... 146
6.2 Load Test Benchmarking .. 147

7 FAQ ... 148

8 Appendix I: Service Layer versus DI API .. 151
8.1 CRUD APIs ... 151

8.1.1 Creating Entities ... 151
8.1.2 Retrieving Entities ... 152
8.1.3 Updating Entities ... 153
8.1.4 Deleting Entities ... 153

8.2 Company Service APIs .. 154
8.3 Transaction APIs .. 155
8.4 Query APIs .. 157
8.5 UDO APIs .. 158

8.5.1 Creating UDOs ... 158
8.5.2 CRUD and Query Operations .. 163

8.6 UDF APIs ... 163
8.6.1 CRUD Operations .. 164
8.6.2 Performing Operations on Entities with UDFs .. 166

9 Appendix II: Metadata Naming Difference between Service Layer and DI API 169
9.1 Collection Object Naming Difference ... 169
9.2 Business Object Naming Difference ... 171
9.3 Property Naming Difference .. 171

8
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Introduction

1 Introduction

1.1 About This Document

This document covers the basic usages of SAP Business One Service Layer and explains the technical details of
building a stable, scalable Web service using SAP Business One Service Layer.

1.2 Target Audience

We recommend that you refer to this document if you are:
· Developing applications based on Service Layer API
· Planning your first load balancing deployment
· Improving your system's performance
· Assuring your system's stability under heavy work load

This document is intended for system administrators who are responsible for configuring, managing, and
maintaining an SAP Business One Service Layer installation. Familiarity with your operating system and your
network environment is beneficial, as is a general understanding of web application server management.
This document is also relevant for software developers who build add-ons for SAP Business One.

1.3 About SAP Business One Service Layer

SAP Business One Service Layer is a new generation of extension API for consuming SAP Business One data and
services. It builds on core protocols such as HTTP and OData, and provides a uniform way to expose full-featured
business objects on top of a highly scalable and high-availability Web server. Currently, Service Layer supports
OData version 3, version 4, and a few selected OData client libraries, for example, WCF for .Net developers; data.js
for JavaScript developers.

 Note
You can use HTTP header OData-Version to switch the OData versions. For example, to use OData
version 4, send the following HTTP request:

GET /$metadata

OData-Version: 4.0

...

Working with SAP Business One Service Layer
Getting Started

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 9

2 Getting Started

2.1 System Requirements

SAP Business One Service Layer runs on SUSE Linux Enterprise Release 11 SP2, 64-bit edition. It is an application
server built on the Apache HTTP Web server. The required database backend is SAP HANA Platform Edition 1.0
SPS 07 Rev74.
SAP Business One Service Layer can be deployed in one of two different modes:
· An integrated mode, installing on the same SAP HANA server so as to keep the system landscape as simple

as possible
· A distributed mode, installing on separate machines to obtain more computing power for higher concurrent

throughput
For hardware requirements, such as memory capacity or number of CPU cores, refer to SAP HANA hardware
specifications.

2.2 Architecture Overview

SAP Business One Service Layer has a 3-tier architecture: the clients communicate with the Web server using
HTTP/OData, and the Web server relies on the database for data persistence.
Within the Web server, several key components are involved in handling incoming OData-based HTTP requests:
· The OData Parser looks at the requested URL and HTTP methods (GET/POST/PATCH/DELETE), translates

them into the business objects to be operated on, and calls each object's respective method for
create/retrieve/update/delete (CRUD) operations. In reverse, the OData Parser also receives the returned
data from business objects, translates them into HTTP return code and JSON data representatives, and
responds to the original client.

· The DI Core is the interface for accessing SAP Business One objects and services, the same one that is used
by SAP Business One DI API. As a result, Service Layer API and DI API have identical definitions for objects
and object properties, smoothing the learning curve for developers who have already acquired DI API
development experience.

· The session manager implements session stickiness, working with the Service Layer load balancer, so that
requests from the same client will be handled by the same Service Layer node.

· OBServer is the body of business logic dealing with the actual work, for example, tax calculation, posting, and
so on. Service Layer achieves high performance and scalability by leveraging multi-processing.

10
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Getting Started

In order to achieve even higher availability and scalability, we recommend deploying multiple Service Layer
instances with a load balancer in the front. The benefits include the following:
· Client requests can be dispatched to different Service Layer instances and executed in parallel.
· If Service Layer is installed in a distributed mode, and there is a hardware failure in one host machine, Service

Layer is smart enough to re-dispatch client requests to another live instance without asking users to log on
again.

2.3 Installing SAP Business One Service Layer

The Service Layer is an application server that provides Web access to SAP Business One services and objects
and uses the Apache HTTP Server (or simply Apache) as the load balancer, which works as a transit point for
requests between the client and various load balancer members. The architecture of the Service Layer is
illustrated below:

Working with SAP Business One Service Layer
Getting Started

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 11

 Recommendation
As the communication between the load balancer and the load balancer members is transmitted via
HTTP instead of HTTPS, you should configure the firewall on each load balancer member machine in such
a way that only visits from the load balancer are allowed to the load balancer members.

You may set up Service Layer in one of the following ways:
· [Recommended] The load balancer and load balancer members are all installed on different physical

machines. Note that at least one load balancer member must be installed on the same machine as the load
balancer.

· The load balancer and all load balancer members are installed on the same machine.
Remote installation of Service Layer is not supported. For example, if you intend to install the load balancer on
server A and two load balancer members on servers B and C, you must run the server components setup wizard
on each server separately.
The installation order of the load balancer and load balancer members does not affect the functioning of Service
Layer. However, we recommend that you create load balancer members first because you must specify the
information of load balancer members when installing the load balancer. Below is a simplified procedural
description for installing the Service Layer (load balancer and load balancer members).

Prerequisites

When copying installation files to each server, ensure the following points are met:
· The following files are available:

o RPM packages:
o B1ServerToolsCommon

o B1ServerToolsJava64

o B1ServerToolsSupport

o B1ServiceLayerApacheWebServer

o B1ServiceLayerComponent

o install.bin

· The original folder structure is kept. For example, the RPM packages must all reside in an RPM folder, separate
from the binary file install.bin.

Procedure

1. Log on to the Linux server as root.
2. In a command line terminal, navigate to the directory …/Packages.Linux/ServerComponents where the

install.bin script is located.
3. Start the installer from the command line by entering the following command:

./install.bin

The installation process begins.

12
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Getting Started

 Note
If you receive the error message “Permission denied”, you must set execution permission on the installer
script to make it executable. To do so, run the following command:
chmod +x install.bin

4. In the welcome window of the setup wizard, choose the Next button.
5. In the Specify Installation Folder window, specify a folder in which you want to install Service Layer and choose

the Next button.
6. In the Select Features window, select Service Layer.
7. In the Specify Security Certificate window, specify a security certificate and choose the Next button. You can

also choose to use a self-signed certificate.
8. In the Database Server Specification window, specify the information of your SAP HANA database server.
9. In the Service Layer window, specify the following information for Service Layer and then choose the Next

button:
o Install Service Layer Load Balancer: Select the checkbox to install the load balancer.

When installing the load balancer, you need to specify the following information:
o Port for the load balancer
o Server name or IP address of all load balancer members, as well as their ports.

o Port: Specify a port for the load balancer. Note that if the load balancer and load balancer members are
installed on the same machine, each must use a different port.

o Service Layer Load Balancer Members: Specify the server address and port number for each load
balancer member.
If you have selected the Install Service Layer Load Balancer checkbox, you can specify load balancer
members either on local (current) or remote (different) machines. If on the local machine, the installer
creates a local load balancer member; if on a remote machine, the load balancer member is added to the
pool (cluster) of load balancer members, but you need to install the specific load balancer member on its
own server.
If you have not selected the checkbox, you cannot edit the server address, which is automatically set to
127.0.0.1. All specified load balancer members are created.

 Note
IPv6 addresses are not allowed.

o Maximum Threads per Load Balancer Member: Define the maximum number of threads to be run for each
load balancer member.

o SLD Server and Port: [Available as of 9.1 PL06] Specify a System Landscape Directory (SLD) server and
the port for the SLD service. The Service Layer will connect to SAP Business One companies via the SLD.
Note that you must specify the same SLD server for the load balancer and load balancer members if they
are installed on different machines.

Working with SAP Business One Service Layer
Getting Started

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 13

10. In the Review Settings window, review your settings and then choose the Install button to start the installation.
11. In the Setup Progress window, when the progress bar displays 100%, choose the Next button to finish the

installation.
12. In the Setup Process Completed window, review the installation results and then choose the Finish button to

exit the wizard.

Results

As of release 9.1 PL01, the Service Layer runs under the SAP Business One service user B1service0 as all other
SAP Business One services on Linux; user permissions for this user account should not be changed.
After installing Service Layer, you can check the status of each balancer member in the balancer manager. To do
so, in a Web browser, navigate to https://<Balancer Server Address>:<Port>/balancer-manager.
To start working with Service Layer, ensure that the system database SBOCOMMON and your company database
are installed or upgraded to the same version. In addition, the SAP HANA database user used for connection must
have the following SQL object privileges:
· SBOCOMMON: SELECT, INSERT, DELETE, UPDATE, EXECUTE (all grantable)
· Company database: Full privileges

When installation is complete, the default Web browser on your server opens with links to various documentation
files (for example, this user guide and the API reference). The documentation files are stored in the
<Installation Folder>/ServiceLayer/doc/ folder. In addition, you can access the API reference in a Web
browser from anywhere via this URL: https://<Load Balancer Server>:<Load Balancer Port>. Note
that only the following Web browsers are supported:
· Microsoft Internet Explorer 7 and higher
· Google Chrome
· Mozilla Firefox
· Apple Safari

As of 9.1 patch level 04, you can determine the version of the local Service Layer installation by running either of
the following commands as root:
· /etc/init.d/b1s --version

14
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Getting Started

· /etc/init.d/b1s -v

As of SAP Business One 9.1 patch level 06, the SLD server is used by Service Layer during logon. After installation,
the SLD address is saved into the Service Layer configuration file (b1s.conf). During logon, Service Layer
connects to SLD to validate the SAP Business One user and password, and get the DB credential from the SLD
server.
For more information, see the SAP Business One Administrator’s Guide, version for SAP HANA at
https://help.sap.com/viewer/p/SAP_BUSINESS_ONE_VERSION_FOR_SAP_HANA.

https://help.sap.com/viewer/p/SAP_BUSINESS_ONE_VERSION_FOR_SAP_HANA

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 15

3 Consuming SAP Business One Service Layer

This section explains how to consume SAP Business One Service Layer and provides examples. For a full list of
exposed entities and actions, refer to metadata returned by your service or the API reference of SAP Business
One Service Layer.
Before interacting with Service Layer, refer to the following table for the key elements and terms:

Key Elements and
Terms

Description/Activity URL/Sample Code

Service Root URL Identifies the root of Service Layer
API. Service layer supports HTTPS
by default.

https://<server>:<port>/b1s/<version>

Example: https://hanaserver:50000/b1s/v1

 Note
To use OData version 3, send the following
HTTP request:
https://hanaserver:50000/b1s/v1

To use OData version 4, send the following
HTTP request:
https://hanaserver:50000/b1s/v2

Resource Path Identifies the resource to be
interacted with. It can be a collection
of entities or a single entity.

https://<server>:<port>/b1s/<version>/
<resource_path>

Example:
https://hanaserver:50000/b1s/v1/Items

Query Options Specifies multiple query options and
operation parameters.

https://<server>:<port>/b1s/<version>/
<resource_path>?<query_options>

Example:
https://hanaserver:50000/b1s/v1/Items?
$top=2&$orderby=itemcode

HTTP Verb Indicates the action to be taken
against the resource, in accordance
with the RESTful architectural
principles.

In the following example, the 2 requests are
equivalent:
· POST

https://hanaserver/b1s/v1/Login

· POST /Login

JSON Resource
Representation

Represents and interacts with
structured content, embedded in
Service Layer requests and
responses.

{"key1": "value1", "arr1": [100, 200],
"key2": "value2"}

 Recommendation
To test Service Layer without developing a program, you can install the "POSTMAN" browser extension in
Google Chrome, or install equivalent add-ons on other browsers.

16
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

3.1 Login and Logout

Before you perform any operation in Service Layer, you first need to log into Service Layer.

Send this HTTP request for login:
POST https://<Server Name/IP>:<Port>/b1s/v1/Login

{"CompanyDB": "US506", "UserName": "manager", "Password": "1234"}

If the login is successful, you get the following response:
HTTP/1.1 200 OK

Set-Cookie: B1SESSION=PTRzIjYK-weN6-1Lx1-ZG0J-3ARxfjcU0Shy;HttpOnly;

Set-Cookie: ROUTEID=.node0; path=/b1s

{

 "SessionId": "PTRzIjYK-weN6-1Lx1-ZG0J-3ARxfjcU0Shy",

}

The response of Login request indicates that Service Layer inserts a cookie in the response header, with the
cookie name 'B1SESSION' and cookie value 'PTRzIjYK-weN6-1Lx1-ZG0J-3ARxfjcU0Shy' respectively. In addition,
another cookie item (ROUTEID=.node0) is returned by Apache server to ensure the load balancer stickiness.

Send this HTTP request for logout:
POST /Logout

Cookie: B1SESSION=PTRzIjYK-weN6-1Lx1-ZG0J-3ARxfjcU0Shy; ROUTEID=.node0

If the logout is successful, you get the following response, without any response content:
HTTP/1.1 204 No Content

3.1.1 Session

A session is started by a login request and is ended by a logout request. Each valid session has a unique session ID
which is distinguished by a GUID-like string. To make subsequent requests after login, the cookie items
B1SESSION and ROUTEID are mandatory and shall both be set in each request header. For example, to get an
Item with ID='i001', send the following request with a cookie:
GET /Items('i001')

Cookie: B1SESSION=PTRzIjYK-weN6-1Lx1-ZG0J-3ARxfjcU0Shy; ROUTEID=.node0

If you write a client application in Windows desktop mode (not in Browser Access mode), do not forget to add the
cookie item in the HTTP header, as in the above example of Logout. Otherwise, you may receive the "Invalid
session" error:
HTTP/1.1 401 Unauthorized

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 17

{

 "error" : {

 "code" : -1001,

 "message" : {

 "lang" : "en-us",

 "value" : "Invalid session."

 }

 }

}

 Note
If your application is written in JavaScript and runs in Browser Access mode, you do not need to set the
cookie each time you send a request, since most Web browsers are able to handle the cookie
transparently.

18
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

3.2 Single Sign-On (SSO)

As of SAP Business One 9.2, version for SAP HANA, besides the normal login, Service Layer supports SSO as well.
Service Layer, as a service provider (SP), implements the SSO process via the SAML2 protocol on top of SLD,
which functions as an identity service provider (IDP). Service Layer supports two SSO methods:
· HTTP-POST: used in the browser environment
· PAOS (Reverse HTTP Binding for SOAP Specification): used for the non-browser client

It is recommended that Service Layer be deployed on the same Linux machine as SLD. If you deploy it on two
separate machines, the time must be synced between the two machines before the SSO process is implemented.

3.2.1 SSO via PAOS

Prerequisites

In order to maintain a session, it is essential to first log in to SLD, before logging in to Service Layer via SSO.

SSO Flow

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 19

Steps Description

1. Post a login request to Service Layer with the PAOS header as below:
POST /b1s/v1/ssob1s/ HTTP/1.1

Accept: application/vnd.paos+xml

PAOS: ver='urn:liberty:paos:2003-08';'urn:oasis:names:tc:SAML:2.0:profiles:SSO:ecp'

2. From the response header, get the JSESSIONID from Set-Cookie header as the SSO session between
Service Layer and the client:
Set-Cookie: JSESSIONID=5AE19B213830AF766BCC477DF4A40AE5;

Add JSESSIONID in subsequent requests to Service Layer, so that the client can maintain a session with
Service Layer for the whole SSO process. From the response body, get the IDP location and the soap body
content.

3. Forward the soap body content from step 2 to the IDP location, with the session ID maintained between the
client and SLD as the request cookie.

4. IDP issues a signed response containing user login information.
5. The client forwards the signed response to Service Layer, with the SSO session ID retrieved from step 2.
6. If authentication is passed, Service Layer responds with the http status 200.
7. The client posts a login request to Service Layer with the SSO Session ID in the request cookie as below:

POST /b1s/v1/ssob1s HTTP/1.1

Cookie: JSESSIONID=5AE19B213830AF766BCC477DF4A40AE5

8. On success, Service Layer responds with:
HTTP/1.1 200 OK

Set-Cookie: B1SESSION=PTRzIjYK-weN6-1Lx1-ZG0J-3ARxfjcU0Shy;HttpOnly;

Set-Cookie: ROUTEID=.node0; path=/b1s

{ "SessionId" : "PTRzIjYK-weN6-1Lx1-ZG0J-3ARxfjcU0Shy", "Version" : "920110",
"SessionTimeout" : 30 }

9. With the B1SESSION and ROUTEID, clients are allowed to access the resources of Service Layer.

20
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

3.2.2SSO via HTTP-POST

SSO Flow

Steps Description

The SSO flow via the browser client is basically the same as SSO via PAOS, except for the following:
1. Browser clients finish the SSO process via HTTP-POST.
2. Browser clients automatically redirect the request to and the response from Service Layer by auto-submitting

HTML forms.
3. Between step 3 and step 4, a login SLD form is returned if the user does not log in to SLD before the start of

the SSO process. After the SLD login, the response of step 4 is to redirect to Service Layer.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 21

3.3 Metadata Document

Metadata describes the capability of the service. It mainly defines types, entities (for example, SAP Business One
objects) and actions (for example, SAP Business One services).
Send the following HTTP request to retrieve metadata:
GET /$metadata

Using SAP Business One business partners and sales orders as examples, you can see the following sections in
the metadata:

<!-- section 1.1 -->

<EnumType Name="BoCardTypes">

 <Member Name="cCustomer" Value="C"/>

 <Member Name="cSupplier" Value="S"/>

 <Member Name="cLid" Value="L"/>

</EnumType>

<!-- section 1.2 -->

<EntityType Name="BusinessPartner">

 <Key>

 <PropertyRef Name="CardCode"/>

 </Key>

 <Property Name="CardCode" Nullable="false" Type="Edm.String"/>

 <Property Name="CardName" Type="Edm.String"/>

 <Property Name="CardType" Type="SAPB1.BoCardTypes"/>

 ...

</EntityType>

<!-- section 1.3 -->

<ComplexType Name="DocumentParams">

 <Property Name="DocEntry" Nullable="false" Type="Edm.Int32"/>

</ComplexType>

<!-- section 1.4 -->

<EntityType Name="Document">

 <Key>

 <PropertyRef Name="DocEntry"/>

 </Key>

 <Property Name="DocEntry" Nullable="false" Type="Edm.Int32"/>

 <Property Name="DocNum" Type="Edm.Int32"/>

 <Property Name="DocType" Type="SAPB1.BoDocumentTypes"/>

 ...

22
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

 <Property Name="DocumentLines" Type="Collection(SAPB1.DocumentLine)"/>

 ...

</EntityType>

<!-- section 1.5 -->

<ComplexType Name="DocumentLine">

 <Property Name="LineNum" Nullable="false" Type="Edm.Int32"/>

 <Property Name="ItemCode" Type="Edm.String"/>

 <Property Name="ItemDescription" Type="Edm.String"/>

 <Property Name="Quantity" Type="Edm.Double"/>

 ...

</ComplexType>

<!-- section 2.1 -->

<Action IsBindable="true" Name="Close">

 <Parameter Name="Document" Type="SAPB1.Document"/>

</Action>

<!-- section 2.2 -->

<Action Name="OrdersService_Close">

 <Parameter Name="DocumentParams" Type="SAPB1.DocumentParams"/>

</Action>

<!-- section 3 -->

<EntityContainer Name="ServiceLayer">

 <EntitySet EntityType="SAPB1.BusinessPartner" Name="BusinessPartners"/>

 <EntitySet EntityType="SAPB1.Document" Name="Orders"/>

 ...

</EntityContainer>

The above metadata sections indicate how the entities and actions are exposed:
· In Section 3, you can see that entities BusinessPartners and Orders are exposed. You can perform

standard create/retrieve/update/delete (CRUD) operations on them.
· In Section 2.1, you can see that a bindable action named Close is defined and can be bound to type

SAPB1.Document. As orders are of this entity type, therefore, orders has a Close action (POST
/Orders(id)/Close).

· In Section 2.2, you can see a global action named OrdersService.Close is defined. (You can use POST
/OrdersService.Close).

 Note
If you do not see the metadata sections, enable the ExperimentalMetadata option. You can add the
option in the HTTP header:

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 23

GET /$metadata

B1S-ExperimentalMetadata: true

 Note
Metadata for UDFs/UDTs/UDOs:
In SAP Business One 9.1 patch level 05 and later, information from the user-defined fields (UDFs), user-
defined tables (UDTs) and user-defined objects (UDOs) is added to the metadata. As different SAP
Business One company databases have different UDFs/UDTs/UDOs, the metadata of the service may
vary if you connect to a different company database.
For UDTs, only the "no object" type is added to the metadata. UDTs are treated as simple entities that
have only one main table. Thus, third-party tools, such as MS WCF, can generate code for
UDFs/UDTs/UDOs from the metadata.

3.4 Service Document

The service document is a list of exposed entities. Use the root service URL to retrieve the service document.
Send the HTTP request:
GET /

The response is:
HTTP/1.1 200 OK

{

 "value": [

 {

 "name": "ChartOfAccounts",

 "kind": "EntitySet",

 "url": "ChartOfAccounts"

 },

 {

 "name": "SalesStages",

 "kind": "EntitySet",

 "url": "SalesStages"

 },

 ...

]

}

24
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

3.5 Create/Retrieve/Update/Delete (CRUD) Operations

OData protocol defines a standard way to create/retrieve/update/delete (CRUD) an entity. The CRUD operations
are all similar. You can refer to the API reference document for details (see the screenshot below).

3.5.1 Creating Entities

Use the HTTP verb POST and the content of an entity to create the entity.
For most cases, the response on success is also the content of the entity.

 Example
How to create a customer (business partner) named "c1"
Send this HTTP request:
POST /BusinessPartners

{

 "CardCode": "c1",

 "CardName": "customer c1",

 "CardType": "cCustomer"

}

All valid fields are defined in its type - SAPB1.BusinessPartner in metadata section 1.2.
Note that CardType is of type Enumeration (BoCardTypes, defined in metadata section 1.1). Both the
enumeration name and value are accepted by Service Layer. So these two statements are equivalent:
{"CardType": "cCustomer",}

{"CardType": "C",}

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 25

On success, the server returns HTTP code 201 (Created) and the content of the entity is as follows:
HTTP/1.1 201 Created

{

 "CardCode": "c1",

 "CardName": "customer c1",

 "CardType": "cCustomer",

 "GroupCode": 100,

 ...

}

On error, the server returns HTTP code 4XX (for example, 400) and the error message as content is as
follows (suppose customer "c1" exists):
HTTP/1.1 400 Bad Request

{

 "error": {

 "code": -10,

 "message": {

 "lang": "en-us",

 "value": "1320000140 - Business partner code 'c1' already assigned
to a business partner; enter a unique business partner code"

 }

 }

}

 Example
How to create a sales order with two document lines
The POST content - entity Orders - is of type Document and defined in metadata section 1.4.
DocumentLines, known as the sub-object of sales order, is a collection of the complex type
DocumentLine, which is defined in metadata section 1.5. In JSON format, it is an array in square brackets
[].
Send this HTTP request:
POST /Orders

{

 "CardCode": "c1",

 "DocDate": "2014-04-01",

 "DocDueDate": "2014-04-01",

 "DocumentLines": [

 {

 "ItemCode": "i1",

26
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

 "UnitPrice": 100,

 "Quantity": 10,

 "TaxCode": "T1",

 },

 {

 "ItemCode": "i2",

 "UnitPrice": 120,

 "Quantity": 8,

 "TaxCode": "T1",

 },

]

}

On success, the server returns 201 (Created) and the content of the entity is as follows:
HTTP/1.1 201 Created

{

 "DocEntry": 22,

 "DocNum": 11,

 "DocType": "dDocument_Items",

 ...

 "DocumentLines": [

 {

 "LineNum": 0,

 "ItemCode": "i1",

 ...

 },

 {

 "LineNum": 1,

 "ItemCode": "i2",

 ...

 }

],

 ...

}

3.5.2Retrieving Entities

Use the HTTP verb GET and the key fields to retrieve the entity.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 27

 Example
How to get the customer "c1" in the previous example
As defined in metadata section 1.2, CardCode is the key property (type is string). To retrieve the
customer "c1", send the HTTP request:
GET /BusinessPartners('c1')

or
GET /BusinessPartners(CardCode='c1')

The service returns HTTP code 200 that indicates success with the content of the object in JSON format:
HTTP/1.1 200 OK

{

 "CardCode": "c1",

 "CardName": "customer c1",

 "CardType": "cCustomer",

 "GroupCode": 100,

 ...

}

 Example
How to get the sales order in the previous example
As defined in metadata section 1.4, DocEntry is the key property (type is Int32). To retrieve the sales
order, send the HTTP request:
GET /Orders(22)

or
GET Orders(DocEntry=22)

 Note
Single quotes are required for string values such as 'c1', and no single quotes around integer values such
as 22.
If the entity key contains multiple properties, send the HTTP request:
GET /SalesTaxAuthorities(Code='AK',Type=-3)

3.5.3Updating Entities

Use the HTTP verb PATCH or PUT to update the entity. Generally, PATCH is recommended.
The difference between PATCH and PUT is that PATCH ignores (keeps the value) those properties that are not
given in the request, while PUT sets them to the default value or to null.

 Example
How to update the name of the customer "c1"

28
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

Send the HTTP request:
PATCH /BusinessPartners('c1')

{

 "CardName": "Updated customer name"

}

On success, HTTP code 204 is returned without content.
HTTP/1.1 204 No Content

 Note
Read-only properties (for example, CardCode) cannot be updated. They are ignored silently if assigned in
the request.

3.5.4Deleting Entities

Use the HTTP verb DELETE and the key fields to delete the entity.

 Example
How to delete the customer "c1"
Send the HTTP request:
DELETE /BusinessPartners('c1')

On success, HTTP code 204 is returned without content.
HTTP/1.1 204 No Content

 Note
You cannot delete the sales order in SAP Business One. If you try to delete the sales order No.22:
DELETE /Orders(22)

An error is reported to deny the operation:
HTTP/1.1 400 Bad Request

{

 "error": {

 "code": -5006,

 "message": {

 "lang": "en-us",

 "value": "The requested action is not supported for this object."

 }

 }

}

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 29

3.5.5Create Entity with No Content

Considering the fact that returning all the entity content on creating one entity may be not suitable for the high
performance demanding scenario, Service Layer provides a way to respond no content by specifying a special
header Prefer with the value return-no-content. For example:
POST /b1s/v1/Items HTTP/1.1

Prefer: return-no-content

{

 "ItemCode": "i011"

}

On success, HTTP code 204 is returned without content, instead of having the usual 201 resource created.
HTTP/1.1 204 No Content

Location: /b1s/v1/Items('i011')

Preference-Applied: return-no-content

 Note
Response header includes Preference-Applied to confirm that the server accepts this preference
option.
The URI of the created resource is in the Location header.

3.6 Actions

Besides the basic entity CRUD operations, Service Layer provides you with two kinds of actions:
· Bound action (bound to entity for operations other than CRUD)
· Global action (mainly used to expose SAP Business One services)

The request and response for each action are described in the metadata. For example, the login function that was
introduced above is a global action. You can find its definition in metadata.

 Note
"Action" is an OData version 4 concept. In OData version 3, it is called "FunctionImport".

You can use the HTTP verb POST for OData actions.

 Example
How to use the bound action
In the metadata section 2.1, you can see a bindable action named "Close" with the first parameter bound
to the Document type:
<!-- section 2.1 -->

<Action IsBindable="true" Name="Close">

 <Parameter Name="Document" Type="SAPB1.Document"/>

30
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

</Action>

As orders are of type Document, that means orders have a "Close" action. You can send the following
HTTP request to close the document No. 22:
POST /Orders(22)/Close

 Example
How to use the global action
In SAP Business One DI API, you can use the SAPbobsCOM.Activity object to operate the activities in
SAP Business One. However, in SAP Business One 9.1 patch level 01, from Service Layer, you cannot find
the Activity entity. Then how to use it?
By searching in metadata, you can find the action definitions, as follows:
<Action Name="ActivitiesService_GetActivity">

 <Parameter Name="ActivityParams" Type="SAPB1.ActivityParams"/>

 <ReturnType Type="SAPB1.Activity"/>

</Action>

<Action Name="ActivitiesService_AddActivity">

 <Parameter Name="Activity" Type="SAPB1.Activity"/>

 <ReturnType Type="SAPB1.ActivityParams"/>

</Action>

Note that the example follows the format of OData version 4 (you have to set OData-Version: 4.0 in
the request header to enable OData version 4). For OData version 3, "FunctionImport" is used instead of
"Action". The result is as follows:
<FunctionImport Name="ActivitiesService_GetActivity">

 <Parameter Name="ActivityParams" Type="SAPB1.ActivityParams"/>

 <ReturnType Type="SAPB1.Activity"/>

</FunctionImport>

<FunctionImport Name="ActivitiesService_AddActivity">

 <Parameter Name="Activity" Type="SAPB1.Activity"/>

 <ReturnType Type="SAPB1.ActivityParams"/>

</FunctionImport>

It shows that you can use ActivitiesService to get and add activity objects. The related types are also
defined in metadata, as follows:
<ComplexType Name="ActivityParams">

 <Property Name="ActivityCode" Nullable="false" Type="Edm.Int32"/>

</ComplexType>

<ComplexType Name="Activity">

 <Property Name="ActivityCode" Nullable="false" Type="Edm.Int32"/>

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 31

 <Property Name="CardCode" Type="Edm.String"/>

 <Property Name="Notes" Type="Edm.String"/>

 ...

</ComplexType>

To add an activity, send the HTTP request:
POST /ActivitiesService_AddActivity

{

 "Activity":{

 "ActivityCode": 1,

 "CardCode": "c1"

 }

}

On success, it returns the content of type SAPB1.ActivityParams as defined.

To get an activity, send the HTTP request:
POST /ActivitiesService_GetActivity

{

 "ActivityParams": {

 "ActivityCode": 1

 }

}

On success, it returns the content of type SAPB1.Activity as defined.

Note that from SAP Business One 9.1 patch level 02 and later, "Activity" has been exposed as an entity,
and, therefore, the global actions were hidden by default. You can set the Service Layer option
ExperimentalMetadata=true to view all metadata.

 Example
Closing an order - non-bound version
There is a hidden action named OrdersService_Close that you can also use to close an order as the
bound action. To view the action, set DebugLevel: 2 in HTTP header.
In metadata, you can see the definition in section 2.2:
<!-- section 2.2 -->

<Action Name="OrdersService_Close">

 <Parameter Name="DocumentParams" Type="SAPB1.DocumentParams"/>

</Action>

And the first parameter DocumentParams is defined in section 1.3.
<!-- section 1.3 -->

32
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

<ComplexType Name="DocumentParams">

 <Property Name="DocEntry" Nullable="false" Type="Edm.Int32"/>

</ComplexType>

To close the order No.22, you can send the HTTP request:
POST /OrdersService_Close

{

 "DocumentParams": {"DocEntry": 22}

}

 Example
Previewing an order
A hidden action named OrdersService_Preview allows you to preview an order to create without
actually creating it. Its metadata is as follows:
<Action Name="OrdersService_Preview">

 <Parameter Name="Document" Type="SAPB1.Document"/>

 <ReturnType Type="SAPB1.Document"/>

</Action>

An order to create can be previewed this way:
POST /b1s/v1/OrdersService_Preview

{

 "Document": {

 "CardCode": "c1",

 "DocDate": "2014-04-01",

 "DocDueDate": "2014-04-01",

 "DocumentLines": [

 {

 "ItemCode": "i1",

 "UnitPrice": 100,

 "Quantity": 10,

 "TaxCode": ""

 }

]

 }

}

On success, the server returns HTTP code 200 (OK) and part of the response is as follows:
HTTP/1.1 200 OK

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 33

{

 "DocEntry": null,

 "DocNum": null,

 "DocType": "dDocument_Items",

 "Printed": "psNo",

 "DocDate": "2014-04-01",

 "DocDueDate": "2014-04-01",

 "CardCode": "c1",

 "CardName": "customer 1",

 "DocTotal": 1000,

 "DocCurrency": "$",

 "JournalMemo": "Sales Orders - 0af75168-60cd-4",

 "TaxDate": "2014-04-01",

 "DocObjectCode": "17",

 "DocTotalSys": 1000,

 "DocumentStatus": "bost_Open",

 "TotalDiscount": 0,

 "DocumentLines": [

 {

 "LineNum": 0,

 "ItemCode": "i1",

 "ItemDescription": "i01",

 "Quantity": 10,

 "ShipDate": "2014-04-01",

 "Price": 100,

 "PriceAfterVAT": 100,

 "Currency": "$",

 "WarehouseCode": "01",

 "AccountCode": "_SYS00000000081",

 "TaxCode": "",

 "LineTotal": 1000,

 "TaxTotal": 0,

 "UnitPrice": 100,

 "LineStatus": "bost_Open",

 "PackageQuantity": 10,

 "LineType": "dlt_Regular",

 "OpenAmountSC": 1000,

 "DocEntry": null,

 "UoMCode": "Manual",

 "InventoryQuantity": 10,

34
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

 }

],

}

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 35

3.7 Query Options

Query options within the request URL can control how a particular request is processed by Service Layer. The
following table shows the query options supported by Service Layer.

Option Description Example

$filter Queries collections of entities.
Currently supported functions for
$filter are:
· startswith

· endswith

· contains

· substringof

Currently supported logical and
relational operators include:
· and

· or

· le (less than or equal to)
· lt (less than)
· ge (greater than or equal to)
· gt (greater than)
· eq (equal to)
· ne (not equal to)
· not

 Note
The operator not is supported
as of 9.1 patch level 01.

Parentheses are also supported.

/Orders?$filter=DocTotal gt 3000

/Orders?$filter=DocEntry lt 8 and

(DocEntry lt 8 or DocEntry gt 116)
and CardCode eq 'c1'

/Orders?$filter=DocEntry lt 8 and
((DocEntry lt 8 or DocEntry gt 116)
and startswith(CardCode,'c1'))

/Items?$filter=not
(startswith(ItemName, 'item') and
ForeignName eq null)

$select Returns the properties that are
explicitly requested.

/Orders?$select=DocEntry, DocTotal

$orderby Specifies the order in which entities are
returned.

/Orders?$orderby=DocTotal asc,
DocEntry desc

$top Returns the first n (non-negative
integer) records.

/Orders?$top=3

$skip Specifies the result excluding the first n
entities.

/Orders?$top=3&$skip=2

Where $top and $skip are used together, the
$skip is applied before the $top, regardless of
the order of appearance in the request.

$count Returns the count of an entity
collection.

/Orders/$count

36
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

Option Description Example

/Items/$count?&filter=ItemCode eq
'test'

$inlinecount Allows clients to request the number of
matching resources inline with the
resources in the response.

 Note
$inlinecount query option
applies to OData 3.0 protocols
only. This feature is available in
SAP Business One 9.1 patch
level 06 and later.

For more information, see the section inlinecount
below.

The combination of query options enables Service Layer to support any complex query scenarios, while keeping
the API interface as simple as possible.

3.7.1 Get All Entities

You can use the following ways to get all entity records:
GET /Items

or
GET /Items?$select=*

3.7.2Get Fields of an Entity

You can use the following ways to get item fields:
GET /Items('i1')?$select=ItemCode,ItemName,ItemPrices

or
GET /Items(ItemCode='i1')?$select=ItemCode,ItemName,ItemPrices

3.7.3Query Properties of the Enumeration Type

Enumeration value and enumeration name are both supported in a query option. You can use the following ways
to get all customers:
GET /BusinessPartners?$filter=CardType eq 'C'

or
GET /BusinessPartners?$filter=CardType eq 'cCustomer'

Note that 'C' is an enumeration value while 'cCustomer' is an enumeration name.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 37

3.7.4Query Properties of the Datetime Type

Multiple date formats are supported. For example:
GET /Orders?$filter=DocDate eq '2014-04-23'

GET /Orders?$filter=DocDate eq '20140423'

GET /Orders?$filter=DocDate eq datetime'2014-04-23'

GET /Orders?$filter=DocDate eq datetime'20140423'

GET /Orders?$filter=DocDate eq '2014-04-23T12:21:21'

GET /Orders?$filter=DocDate eq '20140423000000'

Note that SAP Business One ignores the HOUR/MINUTE/SECOND parts. The datetime keyword prefix can also
be added before the datetime value.

3.7.5Query Properties of the Time Type

Multiple time formats are supported. For example:
GET /Orders?$filter=DocTime eq '18:38:00'

GET /Orders?$filter=DocTime eq '18:38'

GET /Orders?$filter=DocTime eq '183800'

GET /Orders?$filter=DocTime eq '1838'

GET /Orders?$filter=DocTime eq '2014-06-18T18:38:00Z'

GET /Orders?$filter=DocTime eq '2014-06-18T18:38'

Note that SAP Business One ignores the YEAR/MONTH/DAY parts; only the HOUR/MINUTE parts are effective.

3.7.6Paginate the Selected Orders

The pagination mechanism is implemented through top and skip. It allows the data to be fetched chunk by chunk.
For example, after you send the HTTP request:
GET /Orders

The service returns:
HTTP/1.1 200 OK

{

"value": [

{"DocEntry": 7,"DocNum": 2,...},

{"DocEntry": 8,"DocNum": 3,...},

...

{"DocEntry": 26,"DocNum": 21,...}

],

38
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

"odata.nextLink": "/b1s/v1/Orders?$skip=20"

}

Annotation odata.nextLink is contained in the body for the link of the next chunk.

 Note
For OData V3, the next link annotation is odata.nextLink; For OData V4, the next link annotation is
@odata.nextLink.
The default page size is 20. You can customize the page size by changing the following options:
o Set the configuration option PageSize in conf/b1s.conf.
o Use the OData recommended annotation odata.maxpagesize in the Prefer header of the request:

GET /Orders

Prefer:odata.maxpagesize=50

... (other headers)

The response contains HTTP header Preference-Applied to indicate whether and how the request
is accepted:
HTTP/1.1 200 OK

Preference-Applied: odata.maxpagesize=50

...

If PageSize or odata.maxpagesize is set to 0, the pagination mechanism is turned off.
The by-request option odata.maxpagesize is prior to the configuration option PageSize.

3.7.7 Aggregation

As of SAP Business One 9.1 patch level 12, version for SAP HANA, aggregation is partly supported by Service
Layer.
Aggregation behavior is triggered using the query option $apply. Any aggregate expression that specifies an
aggregation method MUST define an alias for the resulting aggregated value. Aggregate expressions define the
alias using the "as" keyword, followed by a SimpleIdentifier. The alias will introduce a dynamic property in the
aggregated result set. The introduced dynamic property is added to the type containing the original expression.
Currently, the supported aggregation methods include sum, avg, min, max, count and distinctcount.

3.7.7.1 sum

The standard aggregation method sum can be applied to numeric values to return the sum of the non-null values,
or null if there are no non-null values.
For example, to sum the DocRate of the Orders, send a request such as:
GET /b1s/v1/Orders?$apply=aggregate(DocRate with sum as TotalDocRate)

On success, the response is as follows:
{

 "odata.metadata" : "$metadata#Orders(TotalDocRate)",

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 39

 "value" : [

 {

 "odata.id" : null,

 "TotalDocRate" : 4.0

 }

]

}

The equivalent SQL on HANA is:
SELECT SUM(T0."DocRate") AS "TotalDocRate" FROM "ORDR" T0

3.7.7.2 average

The standard aggregation method average can be applied to numeric values to return the sum of the non-null
values divided by the count of the non-null values, or null if there are no non-null values.
For example, to calculate the average VatSum of the Orders, send a request such as:
GET /b1s/v1/Orders?$apply=aggregate(VatSum with average as AvgVatSum)

On success, the response is as follows:
{

 "odata.metadata" : "$metadata#Orders(AvgVatSum)",

 "value" : [

 {

 "odata.id" : null,

 "AvgVatSum" : 1.70

 }

]

}

The equivalent SQL on HANA is:
SELECT AVG(T0."VatSum") AS "AvgVatSum" FROM "ORDR" T0

3.7.7.3 max

The standard aggregation method max can be applied to values with a totally ordered domain to return the largest
of the non-null values, or null if there are no non-null values. The result property will have the same type as the
input property.
For example, to get the maximum DocEntry of the Orders, send a request such as:
GET /b1s/v1/Orders?$apply=aggregate(DocEntry with max as MaxDocEntry)

On success, the response is as follows:
{

 "odata.metadata" : "$metadata#Orders(MaxDocEntry)",

40
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

 "value" : [

 {

 "odata.id" : null,

 "MaxDocEntry" : 6

 }

]

}

The equivalent SQL on HANA is:
SELECT MAX(T0."DocEntry") AS "MaxDocEntry" FROM "ORDR" T0

3.7.7.4 min

The standard aggregation method min can be applied to values with a totally ordered domain to return the
smallest of the non-null values, or null if there are no non-null values. The result property will have the same type
as the input property.
For example, to get the minimum DocEntry of the Orders, send a request such as:
GET/b1s/v1/Orders?$apply=aggregate(DocEntry with min as MinDocEntry)

On success, the response is as follows:
{

 "odata.metadata" : "$metadata#Orders(MinDocEntry)",

 "value" : [

 {

 "odata.id" : null,

 "MinDocEntry" : 2

 }

]

}

The equivalent SQL on HANA is:
SELECT MIN(T0."DocEntry") AS "MinDocEntry" FROM "ORDR" T0

3.7.7.5 countdistinct

The aggregation method countdistinct counts the distinct values, omitting any null values.
For example, to count the distinct CardCode of the Orders, send a request such as:
GET /b1s/v1/Orders?$apply=aggregate(CardCode with countdistinct as
CountDistinctCardCode)

On success, the response is as follows:
{

 "odata.metadata" : "$metadata#Orders(CountDistinctCardCode)",

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 41

 "value" : [

 {

 "odata.id" : null,

 "CountDistinctCardCode" : "2"

 }

]

}

The equivalent SQL on HANA is:
SELECT COUNT(DISTINCT T0."CardCode") AS "CountDistinctCardCode" FROM "ORDR" T0

3.7.7.6 count

The value of the virtual property $count is the number of instances in the input set. It must always specify an alias
and must not specify an aggregation method.
For example, to count the number of Orders, send a request such as:
GET /b1s/v1/Orders?$apply=aggregate($count as OrdersCount)

On success, the response is as follows:
{

 "odata.metadata" : "$metadata#Orders(OrdersCount)",

 "value" : [

 {

 "odata.id" : null,

 "OrdersCount" : 4

 }

]

}

The equivalent SQL on HANA is:
SELECT COUNT(T0."DocEntry") AS "OrdersCount" FROM "ORDR" T0

3.7.7.7 inlinecount

The $inlinecount query option allows clients to request the number of matching resources in line with the
resources in the response. This is most useful when a service implements server-side paging, as it allows clients
to retrieve the number of matching resources even if the service decides to respond with only a single page of
matching resources.
You must specify the $inlinecount query option with a value of allpages or none (or not specified); otherwise,
the service returns an HTTP Status code of 400 Bad Request.

42
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

· The $inlinecount query option with a value of allpages specifies that the total count of entities matching
the request must be returned along with the result. The following example returns the total number of banks
in the result set along with the banks.
GET /Banks?$inlinecount=allpages

{

 "odata.count": "5",

 "value": [

 { "BankCode": "bank001", ... },

 { "BankCode": "bank002", ... },

 { "BankCode": "bank003", ... },

 { "BankCode": "bank004", ... },

 { "BankCode": "bank005", ... }

]

}

· The $inlinecount query option with a value of none (or not specified) signifies that the service should not
return a count. For example:
GET /Banks?$inlinecount=none

{

 "value": [

 { "BankCode": "bank001", ... },

 { "BankCode": "bank002", ... },

 { "BankCode": "bank003", ... },

 { "BankCode": "bank004", ... },

 { "BankCode": "bank005", ... }

]

}

The $inlinecount query option can also work with $top and $filter.
· The following example returns the first two banks and the count of all banks.

GET /Banks?$inlinecount=allpages&$top=2

{

 "odata.count": "5",

 "value": [

 { "BankCode": "bank001", ... },

 { "BankCode": "bank002", ... }

]

}

· The following example returns the count of all banks with BankCode greater than "bank003".
GET /Banks?$inlinecount=allpages&$filter=BankCode gt 'bank003'

{

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 43

 "odata.count": "2",

 "value": [

 { "BankCode": "bank004", ... },

 { "BankCode": "bank005", ... }

]

}

3.7.8Grouping

Grouping behavior is triggered using the query option apply and the groupby keyword. This keyword specifies
the grouping properties, a comma-separated list of one or more single-valued property paths that is enclosed in
parentheses. The same property path should not appear more than once; redundant property paths may be
considered valid, but must not alter the meaning of the request.

 Note
As of SAP Business One 9.2 PL03, version for SAP HANA, grouping is supported.

3.7.8.1 Simple Group

Simply enclose the group properties within parentheses. For example, to group the orders by CardCode,
DocEntry, send the following request:
GET /b1s/v1/Orders?$apply=groupby((CardCode, DocEntry))

Or
/b1s/v1/Orders?$apply=groupby((Orders/CardCode, Orders/DocEntry))

On success, the response is as follows:
{

 "odata.metadata" : "$metadata#Orders(CardCode, DocEntry)",

 "value" : [

 {

 "odata.id" : null,

 "CardCode" : "c001",

 "DocEntry" : 2

 },

 {

 "odata.id" : null,

 "CardCode" : "c002",

 "DocEntry" : 3

 },

 {

44
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

 "odata.id" : null,

 "CardCode" : "c001",

 "DocEntry" : 5

 },

 {

 "odata.id" : null,

 "CardCode" : "c001",

 "DocEntry" : 6

 }

]

}

The equivalent SQL on SAP HANA is:
SELECT T0."CardCode", T0."DocEntry" FROM "ORDR" T0 GROUP BY T0."CardCode",
T0."DocEntry"

3.7.8.2 Group with Aggregation Method

Service Layer also supports combining grouping with aggregation. For example, to aggregate the DocNum
property on grouping CardCode, send the following request:
GET /b1s/v1/Orders?$apply=groupby((CardCode), aggregate(DocNum with sum as

TotalDocNum))

On success, the response is as follows:
{

 "odata.metadata" : "$metadata#Orders(CardCode,TotalDocNum)",

 "value" : [

 {

 "odata.id" : null,

 "CardCode" : "c001",

 "TotalDocNum" : 8

 },

 {

 "odata.id" : null,

 "CardCode" : "c002",

 "TotalDocNum" : 2

 }

]

}

The equivalent SQL on HANA is:
SELECT T0."CardCode", SUM(T0."DocNum") AS "TotalDocNum" FROM "ORDR" T0 GROUP BY
T0."CardCode"

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 45

3.7.8.3 Group with Aggregation Method and Filter

SL allows you to filter before grouping. These two operations are separated by a forward slash (/) to express that
they are consecutively applied. For example, to filter before grouping with the aggregation method, send the
following request:
GET /b1s/v1/Orders?$apply=filter(Orders/CardCode eq 'c001')/groupby((CardCode),
aggregate(DocNum with sum as TotalDocNum))

On success, the response is as follows:
{

 "odata.metadata" : "$metadata#Orders(CardCode,TotalDocNum)",

 "value" : [

 {

 "odata.id" : null,

 "CardCode" : "c001",

 "TotalDocNum" : 8

 }

]

}

The equivalent SQL on HANA is:
SELECT T0."CardCode", SUM(T0."DocNum") AS "TotalDocNum" FROM "ORDR" T0 WHERE
T0."CardCode" = 'c001' GROUP BY T0."CardCode"

Note
The filter option can also be specified as below, which is functionally equivalent.
GET /b1s/v1/Orders?$apply=groupby((CardCode), aggregate(DocNum with sum as
TotalDocNum))&$filter=(Orders/CardCode ne 'c001')

3.7.9Cross-Joins

Cross-Joins is supported as of SAP Business One 9.2, version for SAP HANA patch 07.
OData supports querying related entities through defining navigation properties in the data model. These
navigation paths help guide regular consumers in understanding and navigating relationships. In some cases,
however, requests need to span entity sets with no predefined associations. Such requests can be sent to the
special resource $crossjoin instead of to an individual entity set.

3.7.9.1 Cross-Joins with Expand

Expand across two entities
To expand across two entities according to given filter conditions, a request such as the one below,

46
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

GET /b1s/v1/$crossjoin(Orders,BusinessPartners)?$expand=Orders($select=DocEntry,
DocNum),BusinessPartners($select=CardCode)&$filter=Orders/CardCode eq

BusinessPartners/CardCode and Orders/DocNum le 3 and
startswith(BusinessPartners/CardCode,'c00')

results in:
{

 "odata.metadata" : "$metadata#Collection(Edm.ComplexType)",

 "value" : [

 {

 "BusinessPartners" : {

 "CardCode" : "c002"

 },

 "Orders" : {

 "DocEntry" : 3,

 "DocNum" : 2

 }

 },

 {

 "BusinessPartners" : {

 "CardCode" : "c001"

 },

 "Orders" : {

 "DocEntry" : 2,

 "DocNum" : 1

 }

 },

 {

 "BusinessPartners" : {

 "CardCode" : "c001"

 },

 "Orders" : {

 "DocEntry" : 5,

 "DocNum" : 3

 }

 }

]

}

The equivalent SQL on HANA is:
"SELECT T0."DocEntry", T0."DocNum", T1."CardCode" FROM "ORDR" T0 ,"OCRD" T1 WHERE
T0."CardCode" = T1."CardCode" AND T0."DocNum" <= 3 AND T1."CardCode" Like 'c00%'

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 47

Expand across more entities
Service Layer supports expanding across more entities as well. A request such as the one below,
GET
/b1s/v1/$crossjoin(Orders,BusinessPartners,Activities)?$expand=Orders($select=DocEntry
,
DocNum),BusinessPartners($select=CardCode),Activities($select=ActivityCode)&$filter=Or
ders/CardCode eq BusinessPartners/CardCode and BusinessPartners/CardCode eq
Activities/CardCode

results in:
{

 "odata.metadata" : "$metadata#Collection(Edm.ComplexType)",

 "value" : [

 {

 "Activities" : {

 "ActivityCode" : 1

 },

 "BusinessPartners" : {

 "CardCode" : "c001"

 },

 "Orders" : {

 "DocEntry" : 2,

 "DocNum" : 1

 }

 },

 {

 "Activities" : {

 "ActivityCode" : 1

 },

 "BusinessPartners" : {

 "CardCode" : "c001"

 },

 "Orders" : {

 "DocEntry" : 5,

 "DocNum" : 3

 }

 },

 {

 "Activities" : {

 "ActivityCode" : 1

 },

 "BusinessPartners" : {

 "CardCode" : "c001"

48
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

 },

 "Orders" : {

 "DocEntry" : 6,

 "DocNum" : 4

 }

 }

]

}

The equivalent SQL on HANA is:
SELECT T0."DocEntry", T0."DocNum", T1."CardCode", T1."CardName", T2."ClgCode" FROM
"ORDR" T0 , "OCRD" T1, "OCLG" T2 WHERE T0."CardCode" = T1."CardCode" AND
T1."CardCode" = T2."CardCode"

More Examples
GET
/b1s/v1/$crossjoin(SalesOpportunities,BusinessPartners)?$expand=SalesOpportunities($se

lect=CardCode,CustomerName,StartDate),BusinessPartners($select=EmailAddress,
CardName)&$filter=SalesOpportunities/StartDate le '2017-09-20' and
BusinessPartners/CardCode eq SalesOpportunities/CardCode

{

 "odata.metadata": "$metadata#Collection(Edm.ComplexType)",

 "value": [

 {

 "SalesOpportunities": {

 "CardCode": "c2",

 "CustomerName": "customer c22",

 "StartDate": "2017-09-20"

 },

 "BusinessPartners": {

 "EmailAddress": null,

 "CardName": "customer c22"

 }

 },

 {

 "SalesOpportunities": {

 "CardCode": "c1",

 "CustomerName": "customer c11",

 "StartDate": "2017-09-20"

 },

 "BusinessPartners": {

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 49

 "EmailAddress": null,

 "CardName": "customer c11"

 }

 }

]

}

3.7.9.2 Cross-Joins with Calculation

Service Layer allows you to perform simple arithmetic operations on the selected properties and filter conditions.
The supported operations include:
· add
· sub
· mul
· div

For example, a request such as the one below,
/b1s/v1/$crossjoin(Orders,BusinessPartners)?$expand=Orders($select=DocEntry mul
(DocNum sub 1) as DocSeq),BusinessPartners($select=CardCode,
CardName)&$filter=Orders/CardCode eq BusinessPartners/CardCode and Orders/DocEntry ge
Orders/DocNum sub 3

results in:
{

 "odata.metadata" : "$metadata#Collection(Edm.ComplexType)",

 "value" : [

 {

 "BusinessPartners" : {

 "CardCode" : "c001",

 "CardName" : null

 },

 "Orders" : {

 "DocSeq" : 0

 }

 },

 {

 "BusinessPartners" : {

 "CardCode" : "c002",

 "CardName" : null

 },

 "Orders" : {

50
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

 "DocSeq" : 3

 }

 },

 {

 "BusinessPartners" : {

 "CardCode" : "c001",

 "CardName" : null

 },

 "Orders" : {

 "DocSeq" : 18

 }

 }

]

}

The equivalent SQL on HANA is:
SELECT T0."DocEntry" * (T0."DocNum" - 1) AS "DocSeq", T1."CardCode", T1."CardName"
FROM "ORDR" T0 , "OCRD" T1 WHERE T0."CardCode" = T1."CardCode" AND T0."DocEntry"
>= T0."DocNum" - 3

3.7.9.3 Cross-Joins with Aggregation

To aggregate the properties of Orders and BusinessPartners, send the following request:
/b1s/v1/$crossjoin(Orders,BusinessPartners)?$apply=filter(Orders/CardCode eq
BusinessPartners/CardCode)/groupby((BusinessPartners/CardCode,
Orders/DocEntry),aggregate(Orders(DocNum with countdistinct as DistinctDocNum)))

On success, the server replies this:
{

 "odata.metadata" : "$metadata#Collection(Edm.ComplexType)",

 "value" : [

 {

 "BusinessPartners" : {

 "CardCode" : "c001"

 },

 "Orders" : {

 "DistinctDocNum" : 1,

 "DocEntry" : 2

 }

 },

 {

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 51

 "BusinessPartners" : {

 "CardCode" : "c002"

 },

 "Orders" : {

 "DistinctDocNum" : 1,

 "DocEntry" : 3

 }

 },

 {

 "BusinessPartners" : {

 "CardCode" : "c001"

 },

 "Orders" : {

 "DistinctDocNum" : 1,

 "DocEntry" : 5

 }

 }

]

}

The equivalent SQL on HANA is:
SELECT T1."CardCode", T0."DocEntry", COUNT(DISTINCT T0."DocNum") AS "DistinctDocNum"
FROM "ORDR" T0 , "OCRD" T1 WHERE T0."CardCode" = T1."CardCode" GROUP BY
T1."CardCode", T0."DocEntry"

Examples of max
GET /b1s/v1/$crossjoin(Orders,BusinessPartners)?$apply=filter(Orders/CardCode eq
BusinessPartners/CardCode)/groupby((BusinessPartners/CardCode),aggregate(Orders(DocNum

with max as MaxDocNum)))

is equivalent to:
SELECT T1."CardCode", MAX(T0."DocNum") AS "MaxDocNum" FROM "ORDR" T0 , "OCRD" T1 WHERE
T0."CardCode" = T1."CardCode" GROUP BY T1."CardCode"

Examples of count
GET /b1s/v1/$crossjoin(Orders,BusinessPartners)?$apply=filter(Orders/CardCode eq

BusinessPartners/CardCode)/groupby((BusinessPartners/CardCode),aggregate(Orders/$count
as CountDocEntry))

is equivalent to:
SELECT T1."CardCode", COUNT(T0."DocEntry") AS "CountDocEntry" FROM "ORDR" T0 , "OCRD"
T1 WHERE T0."CardCode" = T1."CardCode" GROUP BY T1."CardCode"

Note
Simply crossing join entities without any query options would not work, as this rarely has practical usage
and would fetch large volumes of data under extreme conditions. For example, a request such as the one
below,
/b1s/v1/$crossjoin(Orders,BusinessPartners)

52
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

results in:
{

 "error": {

 "code": -1000,

 "message": {

 "lang": "en-us",

 "value": "invalid $crossjoin query"

 }

 }

}

3.7.10 Row-Level Filter

As of SAP Business One 9.2 PL11, version for SAP HANA, Service Layer allows you to do row level filtering (for
example, document line filtering).
To fully comply with OData, Service Layer exposes a new query service for the row level filter, which is
implemented based on the $crossjoin capabilities by separating the QueryPath and QueryOption in the
query URL.

3.7.10.1 Metadata for Query Service

Query Service is exposed in the manner of FunctionImport in the following way:
<FunctionImport Name="QueryService_PostQuery" ReturnType="Edm.String"

m:HttpMethod="POST">

 <Parameter Name="QueryOption" Type="Edm.String"/>

 <Parameter Name="QueryPath" Type="Edm.String"/>

</FunctionImport>

3.7.10.2 Examples for Query Service

Filter on joining document header and document line
A request such as the one below,
POST /b1s/v1/QueryService_PostQuery

{

 "QueryPath": "$crossjoin(Orders,Orders/DocumentLines)",

 "QueryOption": "$expand=Orders($select=DocEntry,
DocNum),Orders/DocumentLines($select=ItemCode,LineNum)&$filter=Orders/DocEntry eq

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 53

Orders/DocumentLines/DocEntry and Orders/DocEntry ge 3 and
Orders/DocumentLines/LineNum eq 0"

}

results in:
{

 "odata.metadata" : "$metadata#Collection(Edm.ComplexType)",

 "value" : [

 {

 "Orders" : {

 "DocEntry" : 9,

 "DocNum" : 5

 },

 "Orders/DocumentLines" : {

 "ItemCode" : "i1",

 "LineNum" : 0

 }

 },

 {

 "Orders" : {

 "DocEntry" : 12,

 "DocNum" : 6

 },

 "Orders/DocumentLines" : {

 "ItemCode" : "i1",

 "LineNum" : 0

 }

 },

 ...

 {

 "Orders" : {

 "DocEntry" : 20,

 "DocNum" : 12

 },

 "Orders/DocumentLines" : {

 "ItemCode" : "i1",

 "LineNum" : 0

 }

 },

 {

 "Orders" : {

54
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

 "DocEntry" : 44,

 "DocNum" : 22

 },

 "Orders/DocumentLines" : {

 "ItemCode" : "i1",

 "LineNum" : 0

 }

 }

]

}

Filter on joining document header and document line with parenthesis
A request such as the one below,
POST /b1s/v1/QueryService_PostQuery

{

 "QueryPath": "$crossjoin(Orders,Orders/DocumentLines)",

 "QueryOption": "$expand=Orders($select=DocEntry,
DocNum),Orders/DocumentLines($select=ItemCode,LineNum)&$filter=Orders/DocEntry eq
Orders/DocumentLines/DocEntry and (Orders/DocumentLines/LineNum eq 0 or
Orders/DocumentLines/LineNum eq 1 or Orders/DocumentLines/LineNum eq 2)"

}

results in:
{

 "odata.metadata" : "$metadata#Collection(Edm.ComplexType)",

 "value" : [

 {

 "Orders" : {

 "DocEntry" : 9,

 "DocNum" : 5

 },

 "Orders/DocumentLines" : {

 "ItemCode" : "i1",

 "LineNum" : 0

 }

 },

 {

 "Orders" : {

 "DocEntry" : 3,

 "DocNum" : 1

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 55

 },

 "Orders/DocumentLines" : {

 "ItemCode" : "i1",

 "LineNum" : 0

 }

 },

 ...

 {

 "Orders" : {

 "DocEntry" : 28,

 "DocNum" : 17

 },

 "Orders/DocumentLines" : {

 "ItemCode" : "i2",

 "LineNum" : 1

 }

 },

 {

 "Orders" : {

 "DocEntry" : 44,

 "DocNum" : 22

 },

 "Orders/DocumentLines" : {

 "ItemCode" : "i2",

 "LineNum" : 1

 }

 }

]

}

 Note
The response is a raw string with the same structure as JSON and the content-type is text/plain. Some
JSON utility libraries can be used to convert the response to a valid JSON structure to analyze.

3.8 SAP Business One Semantic Layer View Exposure

As of SAP Business One 9.3 PL02, version for SAP HANA, Service Layer supports to automatically discover and
expose the Semantic Layer views, which are available upon deploying the SAP HANA models in SAP Business One

56
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

analytics powered by SAP HANA. In this way, Semantic Layer works as an OData web service which is possible to
be consumed by clients using OData protocol.

3.8.1 Views Deployment

Semantic Layer views are on top of SAP Business One Analytic Service and fall into two categories: system built-in
views and customized views.
The author of the first category is generally SAP and you can deploy the views by following these steps after
installing Analytic Service:
1. Open the SAP Business One analytics home page. (The URL is basically like:

https://hanaserver:40000/Enablement/)
2. Navigate to the Company tab
3. Click the Initialize button to start the initialization process.

After initialization, the views should be available in the Content package of the current SAP HANA instance in
the SAP HANA studio.

For the customer view deployment, see subsequent sections.

3.8.2View Exposure Scope

Semantic Layer has various kinds of views. Not all views are appropriate to be in the exposure scope.
· For the system built-in views, only the views satisfying all the below conditions are eligible for exposure:

o With the calculation view type.
o With the Query postfix in its name, for example, SalesOrderDetailQuery, BalanceSheetQuery, and

so on.
· For the customized views, as long as the view is of type calculation, the view is eligible for exposure.

All eligible views are not exposed by default. To expose them, you can manually perform the following steps:
1. Start SAP Business One client.
2. Open the SAP HANA Model Management window.
3. Select views and check the corresponding Service Layer Expose checkbox.
4. Restart Service Layer to effect the changes.

https://hanaserver:40000/Enablement/)

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 57

3.8.3View Exposure OData Version

Considering OData version 4 is the latest and prevalent protocol in OData world, Semantic Layer service is
exposed in this version by default. Another advantage that comes with this is that implementing OData version 4
would make it possible for Semantic Layer service to be integrated with those SAP components (e.g. WEB IDE),
which have supported or are going to support OData 4.
Meanwhile, OData 3 is supported as well, but it is not the default supported OData version. Clients must set the
request header OData-MaxVersion: 3.0 or MaxDataServiceVersion: 3.0 to specify OData 3.

3.8.4Semantic Layer Service Root

To distinguish Semantic Layer service from Service Layer, the root URL for this service is /b1s/v1/sml.svc.
Upon successfully accessing this URL, the response is as follows:
HTTP/1.1 200 OK

{

 "@odata.context": "https://hanaserver:50000/b1s/v1/sml.svc/$metadata",

 "value": [

 {

 "name": "PurchaseOrderFulfillmentCycleTimeQuery",

58
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

 "kind": "EntitySet",

 "url": "PurchaseOrderFulfillmentCycleTimeQuery"

 },

 {

 "name": "VendorBalanceAnalysisQuery",

 "kind": "EntitySet",

 "url": "VendorBalanceAnalysisQuery"

 },

 {

 "name": "AveragePurchasingPriceQuery",

 "kind": "EntitySet",

 "url": "AveragePurchasingPriceQuery"

 },

...

}

 Note
@odata.context is one annotation from OData 4.

3.8.5Semantic Layer Service Metadata

The service metadata URL is as follows:
GET /b1s/v1/sml.svc/$metadata

Upon successfully accessing the metadata, the service returns:
<?xml version="1.0" encoding="UTF-8"?>

<edmx:Edmx Version="4.0"

 xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx">

 <edmx:DataServices>

 <Schema Namespace="SAPB1"

 xmlns="http://docs.oasis-open.org/odata/ns/edm">

 <EntityType Name="AveragePurchasingPriceQuery">

 <Key>

 <PropertyRef Name="id__"/>

 </Key>

 <Property MaxLength="160" Name="LineDocumentOwner" Nullable="true"

Type="Edm.String"/>

 <Property MaxLength="15" Name="PaymentMethodCode" Nullable="true"
Type="Edm.String"/>

 <Property Name="PostingDateSQL" Nullable="true" Type="Edm.DateTime"/>

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 59

...

 <Property Name="id__" Nullable="false" Type="Edm.Int32"/>

 </EntityType>

 <EntityType Name="OnTimeReceiptStatisticsQuery">

 <Key>

 <PropertyRef Name="id__"/>

 </Key>

 <Property MaxLength="160" Name="DocumentOwner" Nullable="true"
Type="Edm.String"/>

 <Property Name="NumberOfPurchaseOrder" Nullable="true"
Type="Edm.Int32"/>

 <Property Name="id__" Nullable="false" Type="Edm.Int32"/>

 </EntityType>

 <EntityContainer Name="SemanticLayer">

 <EntitySet EntityType="SAPB1.PurchaseOrderFulfillmentCycleTimeQuery"
Name="PurchaseOrderFulfillmentCycleTimeQuery"/>

...

 <EntitySet EntityType="SAPB1.BalanceSheetComparisonQueryParameter"
Name="BalanceSheetComparisonQueryParameters">

 <NavigationPropertyBinding Path="BalanceSheetComparisonQuery"
Target="BalanceSheetComparisonQuery"/>

 </EntitySet>

...

<EntitySet EntityType="SAPB1.KPICashFlowStatementQueryParameter"
Name="KPICashFlowStatementQueryParameters">

 <NavigationPropertyBinding Path="KPICashFlowStatementQuery"
Target="KPICashFlowStatementQuery"/>

 </EntitySet>

 </EntityContainer>

 </Schema>

 </edmx:DataServices>

</edmx:Edmx>

 Note
Please refer to OData-CSDL (Common Schema Definition Language) for more information on the
metadata format.
Version="4.0" in the metadata indicates the service exposes resources with OData 4.

All Semantic Layer views are exposed as entities, as OData only allows to perform queries on entities. Due to the
OData specification, each entity must at least have a primary key. However, this is contradictory to the fact that
views do not have keys from the database perspective. To address this issue in a generic way, a virtual property
id__ is defined as the entity key for the typical views, as seen from the following example.
<!-->For the view sap.sbodemous.ar.doc/SalesOrderDetailQuery<-->

60
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

 <EntityType Name="SalesOrderDetailQuery">

<Key>

 <PropertyRef Name="id__"/>

 </Key

 <Property Name="DocumentNumber" Nullable="true" Type="Edm.Int32"/>

 <Property Name="Owner" Nullable="true" Type="Edm.String"/>

 <Property Name="ShippingType" Nullable="true" Type="Edm.String"/>

......

 <Property Name="DueQuarter" Nullable="true" Type="Edm.String"/>

 <Property Name="DueMonth" Nullable="true" Type="Edm.String"/>

 <Property Name="GrossProfitLC" Nullable="true" Type="Edm.Double"/>

 <Property Name="LineTotalAmountLC" Nullable="true" Type="Edm.Double"/>

<Property Name="id__" Nullable="false" Type="Edm.Int32"/>

 </EntityType>

 <EntitySet EntityType="SalesOrderDetailQuery"
Name="SalesOrderDetailQuery"/>

The entity type and entity set of view SalesOrderDetailQuery are both in the name of SalesOrderDetailQuery. No
other metadata are needed for this view. However, not all views are as simple as that. Some views have
placeholders, for example, sap.sbodemous.fin.fi/BalanceSheetQuery, such as below:
SELECT * FROM
"_SYS_BIC"."sap.sbodemous.fin.fi/BalanceSheetQuery"('PLACEHOLDER'=('$$P_AddVoucher$$',
'N'),'PLACEHOLDER'=('$$P_FinancialPeriod$$','2017'))"

To expose this sort of view, only one entity type and one entity set are not enough to express it. The
corresponding placeholders must be exposed in an appropriate way as well. Another characteristic of this view is
that it cannot be executed directly in the SAP HANA studio. Only with the placeholder parameters can this view be
accessed.
To cope with this situation, it is sensible to separate this view into two entity types, expose them respectively and
then associate them with navigation.

 <EntityType Name="BalanceSheetQuery">

 <Key>

 <PropertyRef Name="id__"/>

 </Key>

 <Property MaxLength="15" Name="AccountCode" Nullable="true"

Type="Edm.String"/>

 <Property MaxLength="20" Name="FinancialPeriodCode" Nullable="true"
Type="Edm.String"/>

 <Property Name="FiscalYear" Nullable="true" Type="Edm.Int16"/>

 <Property MaxLength="100" Name="AccountName" Nullable="true"
Type="Edm.String"/>

 <Property MaxLength="200" Name="SegmentationAccountCode" Nullable="true"
Type="Edm.String"/>

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 61

 <Property Name="FiscalYearOpeningBalanceLC" Nullable="true"
Type="Edm.Double"/>

 <Property Name="FiscalYearOpeningBalanceSC" Nullable="true"
Type="Edm.Double"/>

 <Property Name="FinancialPeriodClosingBalanceLC" Nullable="true"
Type="Edm.Double"/>

 <Property Name="FinancialPeriodClosingBalanceSC" Nullable="true"
Type="Edm.Double"/>

 <Property Name="id__" Nullable="false" Type="Edm.Int32"/>

 </EntityType>

 <EntitySet EntityType="BalanceSheetQuery" Name="BalanceSheetQuery"/>

 <EntityType Name="BalanceSheetQueryParameter">

 <Key>

 <PropertyRef Name="P_FinancialPeriod"/>

 <PropertyRef Name="P_AddVoucher"/>

 </Key>

 <Property MaxLength="20" Name="P_FinancialPeriod" Nullable="false"
Type="Edm.String"/>

 <Property DefaultValue="N" MaxLength="1" Name="P_AddVoucher" Nullable="false"
Type="Edm.String"/>

 <NavigationProperty Name="BalanceSheetQuery"
Partner="BalanceSheetQueryParameters" Type="Collection(SAPB1.BalanceSheetQuery)"/>

 </EntityType>

 <EntitySet EntityType="SAPB1.BalanceSheetQueryParameter"
Name="BalanceSheetQueryParameters">

 <NavigationPropertyBinding Path="BalanceSheetQuery"
Target="BalanceSheetQuery"/>

 </EntitySet>

In this way, BalanceSheetQuery can be navigated from BalanceSheetQueryParameters with placeholders in the
following way.
GET
/b1s/v1/sml.svc/BalanceSheetQueryParameters(P_FinancialPeriod='2017',P_AddVoucher='N')

/BalanceSheetQuery

 Note
NavigationPropertyBinding, Path and Target are three attributes introduced in OData version 4 to
describe the navigation properties of an entity set.
Directly accessing BalanceSheetQuery and BalanceSheetQueryParameters without keys would result in
error.

62
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

3.8.6Semantic Layer View Authorization

For SAP Business One forms, only authorized users have the privilege to access the corresponding views.
By default, a normal user has no permission to access views. Attempting to access would result in failure.
For example, log in to Service Layer with a normal user (e.g. user1) and then send a request to retrieve
BalanceSheetQuery.
GET

/b1s/v1/sml.svc/BalanceSheetQueryParameters(P_FinancialPeriod='2017',P_AddVoucher='N')
/BalanceSheetQuery

Service returns:
HTTP/1.1 401 Unauthorized

{

 "error": {

 "code": -1,

 "message": {

 "lang": "en-us",

 "value": "No permission to access this view 'BalanceSheetQuery' for the

current user 'user1'"

 }

 }

}

To grant the view permission to a normal user, log on to the SAP Business One client with the superuser and then
open the General Authorizations window from System Initialization -> Authorizations.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 63

 Note
Superusers have permission to access all exposed views.
The updated authorization for the normal user would not take effect immediately. To get the latest data,
log off and log on to the service again or simply restart the service.

3.8.7Semantic Layer View Query

Semantic Layer service enables you to perform the basic OData queries on exposed views, which makes it
possible for it to be used in some flexible scenarios.
Assume all queries are performd on schema SBODEMOUS.

3.8.7.1 Getting All Records from View

GET /b1s/v1/sml.svc/AveragePurchasingPriceQuery

is equivalent to
SELECT * , row_number() over() as "id__" FROM

"_SYS_BIC"."sap.SBODEMOUS.ap.case/AveragePurchasingPriceQuery" T0

On success, the response is as follows:
HTTP/1.1 200 OK

64
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

{

 "@odata.context":
"https://hanaserver:50000/b1s/v1/sml.svc/$metadata#AveragePurchasingPriceQuery",

 "value": [

 {

 ...

 "PurchaseAmountLC": 5000,

 "PurchaseQuantityInInventoryUoM": 100,

 "AverageUnitPriceLC": 50,

 "id__": 1

 },

 {

 ...

 "PurchaseAmountLC": 2000,

 "PurchaseQuantityInInventoryUoM": 10,

 "AverageUnitPriceLC": 200,

 "id__": 2

 },

...

]

}

3.8.7.2 Querying View with Query Options

Semantic Layer service allows you to retrieve data with query option combinations.
For example, send the following request to service:
GET
/b1s/v1/sml.svc/AveragePurchasingPriceQuery?$select=PostingYear,BusinessPartnerCode&$s
kip=1&$filter=PostingYear eq '2017' and startswith(BusinessPartnerCode,
'1')&$orderby=PostingYear

On success, the response is as follows:
HTTP/1.1 200 OK

{

 "@odata.context":

"https://hanaserver:50000/b1s/v1/sml.svc/$metadata#AveragePurchasingPriceQuery",

 "value": [

 {

 "PostingYear": "2017",

 "BusinessPartnerCode": "1071287676"

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 65

 },

 {

 "PostingYear": "2017",

 "BusinessPartnerCode": "1100270398"

 },

 {

 "PostingYear": "2017",

 "BusinessPartnerCode": "124052273"

 },

 {

 "PostingYear": "2017",

 "BusinessPartnerCode": "1785286082"

 }

]

}

3.8.7.3 Querying View by Key

As mentioned above, the virtual property id__ was created just to comply with OData spec. Despite the fact that it
functions similarly to that of a key, it is only allowed to do some simple queries.

Get one line by entity key
GET /b1s/v1/sml.svc/AveragePurchasingPriceQuery(1)

is equivalent to
SELECT * , row_number() over() as "__RowNum__" FROM
"_SYS_BIC"."sap.SBODEMOUS.adm/Item" T0 LIMIT 1 OFFSET 1

On success, the response is as follows:
HTTP/1.1 200 OK

{

 "@odata.context":
"https://hanaserver:50000/b1s/v1/sml.svc/$metadata#AveragePurchasingPriceQuery/$entity
",

 "DueDateSQL": "2017-05-16",

 "DocumentDate": "2017-05-16",

 "DocumentYear": "2017",

...

 "DocumentQuarter": "Q2",

 "DocumentMonth": "05",

 "Manager": "-NULL-",

66
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

 "PurchaseAmountLC": 5000,

 "PurchaseQuantityInInventoryUoM": 100,

 "AverageUnitPriceLC": 50,

 "id__": 1

}

Get properties by entity key
GET
/b1s/v1/sml.svc/AveragePurchasingPriceQuery(1)?$select=PostingYear,BusinessPartnerCode

On success, the response is as follows:
HTTP/1.1 200 OK

{

 "@odata.context":

"https//hanaserver:50000/b1s/v1/sml.svc/$metadata#AveragePurchasingPriceQuery/$entity"
,

 "PostingYear": "2017",

 "BusinessPartnerCode": "d3fb9f1c-72a0-4"

}

Get parameter entity by entity key
An entity ending with Parameter is only allowed to be accessed by key. For example, send a request as below:
/b1s/v1/sml.svc/BalanceSheetQueryParameters(P_FinancialPeriod='2017',P_AddVoucher='N')

On success, the response is as follows:
HTTP/1.1 200 OK

{

 "@odata.context":
"https://hanaserver:50000/b1s/v1/sml.svc/$metadata#BalanceSheetQueryParameters/$entity
",

 "P_AddVoucher": "N",

 "P_FinancialPeriod": "2017"

}

Retrieving it without specifying an entity key results in the following failure message:
HTTP/1.1 400 Bad Request

{

 "error": {

 "code": -1,

 "message": {

 "lang": "en-us",

 "value": "View parameters is not allowed to directly access."

 }

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 67

 }

}

 Note
There are some innate query limitations on the virtual property id__. Do not depend on it excessively to
perform complicated queries.

3.8.7.4 Querying View with Placeholders

A view with placeholders is queried by navigating from its corresponding parameter entity.
For example, to query BalanceSheetQuery, you should navigate from BalanceSheetQueryParameters as follows:
GET
/b1s/v1/sml.svc/BalanceSheetQueryParameters(P_FinancialPeriod='2017',P_AddVoucher='N')
/BalanceSheetQuery?$select=FiscalYear, AccountCode

which is equivalent to
SELECT FiscalYear, AccountCode FROM
"_SYS_BIC"."sap.SBODEMOUS.fin.fi/BalanceSheetQuery"('PLACEHOLDER'=('$$P_AddVoucher$$',
'N'),'PLACEHOLDER'=('$$P_FinancialPeriod$$','2016'))

On success, the response is as follows:
HTTP/1.1 200 OK

{

 "@odata.context":
"https://hanaserver:50000/b1s/v1/sml.svc/$metadata#BalanceSheetQuery",

 "value": [

 {

 "FiscalYear": 2017,

 "AccountCode": "_SYS00000000049"

 },

 {

 "FiscalYear": 2017,

 "AccountCode": "_SYS00000000009"

 },

 ...

 {

 "FiscalYear": 2017,

 "AccountCode": "_SYS00000000029"

 }

],

68
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

 "@odata.nextLink":
"BalanceSheetQueryParameters(P_FinancialPeriod='2017',P_AddVoucher='N')/BalanceSheetQu

ery?$select=FiscalYear,%20AccountCode&$skip=20"

}

In addition, query by key is also supported for placeholder views.
GET
/b1s/v1/sml.svc/BalanceSheetQueryParameters(P_FinancialPeriod='2017',P_AddVoucher='N')
/BalanceSheetQuery(1)

GET
/b1s/v1/sml.svc/BalanceSheetQueryParameters(P_FinancialPeriod='2017',P_AddVoucher='N')
/BalanceSheetQuery(1)?$select=FiscalYear, AccountCode

 Note
@odata.nextLink is the paging annotation literal in OData version 4.

3.8.7.5 Querying View with Aggregation

In SAP HANA Studio, you can preview the query view data from multiple dimensions, such as displayed in the
following screenshot:

The produced grid is as follows:

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 69

PostingYear PostingMonth ItemCode_COUNT AverageUnitPriceLC_SUM

2017 10 2 50

The equivalent SQL for this is:
SELECT "PostingYear", "PostingMonth", COUNT(*) AS "ItemCode_COUNT",
SUM("AverageUnitPriceLC") AS "AverageUnitPriceLC_SUM"

FROM "_SYS_BIC"."sap.us1017.ap.case/AveragePurchasingPriceQuery"

GROUP BY "PostingYear", "PostingMonth"

ORDER BY "PostingYear" ASC, "PostingMonth" ASC

To simulate this in Semantic Layer service, send a request as follows:
GET /b1s/v1/sml.svc/AveragePurchasingPriceQuery?$apply=groupby((PostingYear,
PostingMonth), aggregate($count as ItemCode_COUNT, AverageUnitPriceLC with sum as
AverageUnitPriceLC_SUM))&$orderby=PostingYear asc,PostingMonth asc

On success, the response is as follows:
HTTP/1.1 200 OK

{

 "@odata.context":

"$metadata#AveragePurchasingPriceQuery(PostingYear,PostingMonth,ItemCode_COUNT,Average
UnitPriceLC_SUM)",

 "value": [

 {

 "PostingYear": "2017",

 "PostingMonth": "10",

 "ItemCode_COUNT": 2,

 "AverageUnitPriceLC_SUM": 50

 }

]

}

From this perspective, for a simple aggregation scenario, Semantic Layer service is somewhat capable of
producing the similar result as SAP HANA Studio does. However, this does not mean the service is completely
functionally equivalent to SAP HANA Studio. The service aggregation abilities could be gradually enhanced in
subsequent patches.

Other Examples
To query the records number of one view (for example, AveragePurchasingPriceQuery), simply append the
$count keyword as follows:
GET /b1s/v1/sml.svc/AveragePurchasingPriceQuery/$count

On success, the response is as follows:
HTTP/1.1 200 OK

14

The $count can also be applied to views with placeholders, seen from the following examples:

70
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

GET
/b1s/v1/sml.svc/ItemRecommendationQueryParameters(CurrentUserCode=1)/ItemRecommendatio

nQuery/$count

GET
/b1s/v1/sml.svc/BalanceSheetQueryParameters(P_FinancialPeriod='2017',P_AddVoucher='N')

/BalanceSheetQuery/$count

3.8.8Customized Views Exposure

Besides the system built-in views, the customer designed views are also able to be exposed as OData service.
To achieve this, first use the latest SAP HANA Model Package Tool to generate a compressed model package
after exporting the designed SAP HANA models from SAP HANA Studio. As for how to download and use this tool,
see SAP Note 2008991 or this blog.
Compared to the old versions, in the SAP HANA Model Packaging Wizard for SAP Business One, a column named
as Enable for Service Layer is added with checkbox type as below:

https://launchpad.support.sap.com/#/notes/2008991
https://blogs.sap.com/2014/07/24/how-to-export-and-deploy-hana-model-for-sap-business-one/

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 71

For this newly introduced column, the behaviors are described as follows:
· It is disabled for all views, except the views with calculation type.
· The default value is unchecked.
· If it is checked, a new parameter SLEnable="Y" is added to SAP HANA Model information file Info.XML.
· The new version packaging tool is compatible with the old version exported views.

<Model name="xxxx" type="CalculationView" menu="mymenu" IAEnable="N" SLEnable="Y"
SLExpose="Y" />

· If SLEnable = "N" or no SLEnable tag in Info.XML, the corresponding views should be disabled in the SAP
HANA Model Management window.

Once the model package is ready, open the SAP HANA Model Management window in the SAP Business One
client, import the package and click the Deploy button to start the deployment process as follows:

 Note
o Customized views are not allowed to have the same name as the system built-in view, even with a

different package path. Otherwise, the service will respond with an error.
o Likewise, the authorization mechanism can also be applied to customized views.
o One significant functionality of exposing customized views is to provide an alternative to the

RecordSet in DI API, which is not allowed to expose in Service Layer for security and compatibility
considerations.

72
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

3.8.9Customized Views Query

Likewise, all queries supported on system built-in views can be performed on customized views as well. See the
following examples:
Get all records from view
GET https://hanaserver:50000/b1s/v1/sml.svc/MyItem

Query one record from view
GET GET https://hanaserver:50000/b1s/v1/sml.svc/MyItem(2)

Get data with projection, filter and orderby
GET https://hanaserver:50000/b1s/v1/sml.svc/MyItem?$select=ItemGroup,

ItemCode&$filter=ItemCode ne 'FA10004'&$orderby=ItemCode desc,ItemGroup

Get data with aggregation
GET https://hanaserver:50000/b1s/v1/sml.svc/MyItem?$apply=aggregate(ItemCode with
countdistinct as CountDistinctItemCode)

GET https://hanaserver:50000/b1s/v1/sml.svc/MyItem?$apply=filter(IsPurchaseItem eq
'N')/groupby((ItemGroup), aggregate(ItemCode with max as MaxItemCode))

3.8.10 Semantic Layer Basic Authentication

Semantic Layer allows you to access views through basic authentication in browsers. For more information, see
https://www.httpwatch.com/httpgallery/authentication/.
However, basic authentication only allows you to input user name and password. There is not a third input box for
company database.
To address this issue, the solution combines the SAP Business One user name and company database together in
a JSON format as the user name for basic authentication.
For example, for the browser Microsoft Edge, log on as follows:

https://www.httpwatch.com/httpgallery/authentication/

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 73

 Note
Basic authentication is another login mechanism just for Semantic Layer service. The authenticated
session is not allowed to be reused to access the Service Layer resources (for example,
BusinessPartners, Orders).

3.9 Batch Operations

Service Layer supports executing multiple operations sent in a single HTTP request through the use of batching. A
batch request must be represented as a Multipart MIME (Multipurpose Internet Mail Extensions) v1.0 message.

3.9.1 Batch Request Method and URI

Always use the HTTP POST method to send a batch request. A batch request is submitted as a single HTTP POST
request to the batch endpoint of a service, located at the URI $batch relative to the service root.
POST https://hanaserver:50000/b1s/v1/$batch

74
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

3.9.2Batch Request Headers

The batch request must contain a Content-Type header that specifies a content type of multipart/mixed and a
boundary specification as:
Content-Type: multipart/mixed;boundary=<Batch Boundary>

The boundary specification is used in the Batch Request Body section.

3.9.3Batch Request Body

The body of a batch request is composed of a series of individual requests and change sets, each represented as a
distinct MIME part, and separated by the boundary defined in the Content-Type header.
--<Batch Boundary>

<subrequest-1>

--<Batch Boundary>

<subrequest-2>

--<Batch Boundary>

Content-Type: multipart/mixed;boundary=<Changeset Boundary>

--<Changeset boundary>

<subchangeset-request-1>

--<Changeset boundary>

<subchangeset-request-2>

--<Changeset boundary>--

--<Batch Boundary>--

The service processes the requests within a batch request sequentially.
Each sub request must include a Content-Type header with value application/http and a Content-
Transfer-Encoding header with value binary.
Content-Type:application/http

Content-Transfer-Encoding:binary

<sub request body>

The sub request body includes the real request content.

 Example
POST /b1s/v1/Items

<Json format Items Content>

or
GET /b1s/v1/Item('i001')

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 75

Note that two empty lines are necessary after the GET request line. The first empty line is part of the GET
request header, and the second one is the empty body of the GET request, followed by a CRLF.

3.9.4Change Sets

A change set is an atomic unit of works. It means that any failed sub request in a change set will cause the whole
change set to be rolled back. Change sets must not contain any GET requests or other change sets.
Sub change set requests basically have the same format as sub requests outside change sets, except for one
additional feature: Referencing Content ID.
Referencing Content ID: New entities created by a POST request within a change set can be referenced by
subsequent requests within the same change set by referring to the value of the Content-ID header prefixed
with a $ character. When used in this way, $<Content-ID> acts as an alias for the URI that identifies the new
entity.

 Example
How to use change set with Content-ID
1. Create an order.
2. Use $<Content-ID> to modify the order you just created.
--<Batch Boundary>

Content-Type: multipart/mixed;boundary=<Changeset Boundary>

--<Changeset boundary>

Content-Type:application/http

Content-Transfer-Encoding:binary

Content-ID:1

POST /b1s/v1/Items

<Json format Items Content>

--<Changeset boundary>

Content-Type:application/http

Content-Transfer-Encoding:binary

Content-ID:2

PATCH /b1s/v1/$1

<Json format Item update content>

--<Changeset boundary>--

--<Batch Boundary>--

Note that Content-ID only exists in change set sub requests:

76
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

o For OData Version 3, it is not necessary to use Content-ID unless you need to use it for reference.
o For OData Version 4, this header is a mandatory field, whether you use it or not.

3.9.5Batch Request Sample Codes

The sample codes in this section show a complete batch request that contains the following operations:
· A query request
· A change set that contains the following requests:

o Insert entity (with Content-ID = 1)
o Update request (with Content-ID = 2)

Sample Codes

POST https://hanaserver:443/b1s/v1/$batch

OData-Version: 4.0

Content-Type: multipart/mixed;boundary=batch_36522ad7-fc75-4b56-8c71-56071383e77b

--batch_36522ad7-fc75-4b56-8c71-56071383e77b

Content-Type: application/http

Content-Transfer-Encoding:binary

GET /b1s/v1/Items('i001')

--batch_36522ad7-fc75-4b56-8c71-56071383e77b

Content-Type: multipart/mixed;boundary=changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

Content-Type: application/http

Content-Transfer-Encoding: binary

Content-ID: 1

POST /b1s/v1/Items('i002')

Content-Type: application/json

<Json format item(i002) body>

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

Content-Type: application/http

Content-Transfer-Encoding: binary

Content-ID: 2

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 77

PATCH /b1s/v1/$1

Content-Type: application/json

<Json format item(i002) update body>

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd--

--batch_36522ad7-fc75-4b56-8c71-56071383e77b--

3.9.6Batch Response

This section contains the batch responses after you execute the batch requests.
[Batch Request Format Invalid]
Service returns HTTP error code: 400 Bad Request with error info in body if the request format is not valid.

 Example
 "error" : {

 "code" : -1000,

 "innererror" : {

 "context" : null,

 "trace" : null

 },

 "message" : {

 "lang" : "en-us",

 "value" : "Incomplete Batch Request Body!"

 }

 }

[Batch Request Format Valid]
Service returns HTTP code: 202 Accept (OData Version 3) or 200 OK (OData Version 4) if the request format is
valid, The response body that is returned to the client depends on the request execute result.
· If the batch request execution is successful, each sub request will have a corresponding sub response in the

response body.

 Example
--batchresponse_d878cedc-a0ad-4025-823e-5ee1aaffa288

Content-Type:application/http

Content-Transfer-Encoding:binary

HTTP/1.1 200 OK

Content-Type:application/json;odata=minimalmetadata;charset=utf-8

Content-Length:14729

78
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

<Json format Item(i001) Body>

--batchresponse_d878cedc-a0ad-4025-823e-5ee1aaffa288

Content-Type:multipart/mixed;boundary=changesetresponse_8bfb3c36-dbf7-46a0-bdfe-
670bbac86eb2

--changesetresponse_8bfb3c36-dbf7-46a0-bdfe-670bbac86eb2

Content-Type:application/http

Content-Transfer-Encoding:binary

Content-ID:1

HTTP/1.1 201 Created

Content-Type:application/json;odata=minimalmetadata;charset=utf-8

Content-Length:14641

Location:https://hanaserver:50000/b1s/v1/Items('i002')

<Json format Item(i002) Body>

--changesetresponse_8bfb3c36-dbf7-46a0-bdfe-670bbac86eb2

Content-Type:application/http

Content-Transfer-Encoding:binary

Content-ID:2

HTTP/1.1 204 No Content

--changesetresponse_8bfb3c36-dbf7-46a0-bdfe-670bbac86eb2--

--batchresponse_d878cedc-a0ad-4025-823e-5ee1aaffa288--

· If the batch request execution is not successful, the batch will stop executing once a sub request fails.
Note that when there is a failure in the change set, only one response returns for this change set, no matter
how many sub requests exist in this change set. For example, in the example below, the CREATE item
operation fails because an item with the same item code already exists in the database.

 Example
--batchresponse_3aa0885d-245c-4164-b9a4-9c27f7a2c4d1

Content-Type:application/http

Content-Transfer-Encoding:binary

HTTP/1.1 200 OK

Content-Type:application/json;odata=minimalmetadata;charset=utf-8

Content-Length:14729

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 79

<Json format Item(i001) Body>

--batchresponse_3aa0885d-245c-4164-b9a4-9c27f7a2c4d1

Content-Type:application/http

Content-Transfer-Encoding:binary

HTTP/1.1 400 Bad Request

Content-Type:application/json;odata=minimalmetadata;charset=utf-8

Content-Length:233

{

 "error" : {

 "code" : -10,

 "innererror" : {

 "context" : null,

 "trace" : null

 },

 "message" : {

 "lang" : "en-us",

 "value" : "Item code 'i002' already exists"

 }

 }

}

--batchresponse_3aa0885d-245c-4164-b9a4-9c27f7a2c4d1--

 Example
Create an order and cancel it in one transaction
POST https://hanaserver:50000/b1s/v1/$batch

content-type: multipart/mixed;boundary=batch_36522ad7-fc75-4b56-8c71-
56071383e77b

--batch_36522ad7-fc75-4b56-8c71-56071383e77b

content-type: multipart/mixed;boundary=changeset_77162fcd-b8da-41ac-a9f8-
9357efbbd

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

content-type: application/http

content-transfer-encoding:binary

content-id: 1

80
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

post orders

host:host

{

 "cardcode": "c1",

 "docduedate": "2017-07-20",

 "documentlines": [

 {

 "itemcode": "i1",

 "quantity": "1",

 "taxcode": "t1",

 "unitprice": "30"

 }

]

}

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

content-type: application/http

content-transfer-encoding:binary

post $1/cancel

host: host

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd--

--batch_36522ad7-fc75-4b56-8c71-56071383e77b--

3.10 Retrieving Individual Properties

 Note
This feature is available in SAP Business One 9.1 patch level 04 and later.

 Note
Retrieving the properties of a complex type is not supported. For example, the following request is not
possible:
GET /Orders(1)/TaxExtension/TaxId0

Retrieving Property Values

To retrieve the values of individual properties, send HTTP requests as follows:

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 81

GET /Orders(1)/DocEntry

The service returns either of the following:
· If DocEntry 1 exists:

HTTP/1.1 200 OK

{

 "value": 1

}

· If DocEntry 1 does not exist:
HTTP/1.1 200 OK

{

 "odata.null": true

}

For OData version 4, an additional "@" is added before "odata.null" in the response.

Retrieving Property Raw Values

To retrieve the raw values of individual properties, send HTTP requests as follows:
GET /Orders(1)/DocEntry/$value

The service returns:
HTTP/1.1 200 OK

1

For null values, the service returns a 404 Not Found error, as below:
HTTP/1.1 404 Not Found

{

 "error": {

 "code": -2028,

 "innererror": {

 "context": null,

 "trace": null

 },

 "message": {

 "lang": "en-us",

 "value": "Resource not found for the property: DocEntry"

 }

 }

}

82
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

3.11 Associations

 Note
This feature is available in SAP Business One 9.1 patch level 05 and later.

Two entities may be associated (independently related) in one way or another. The association is optionally
represented in the navigation property of each association end (one of the two associated entities).
For example, if an association and corresponding navigation properties have been defined for order and customer
entities in the metadata, you can send the following HTTP request to get the customer associated with a particular
order:
GET Orders(1)/BusinessPartner

If you already knew that the CardCode property of the order is "c1", the above request is equal to GET
BusinessPartners('c1').
You can continue to operate on this entity as on GET BusinessPartners('c1'). For example, to get the foreign
name of the customer, the following two requests are also equal:
· GET Orders(1)/BusinessPartner/ForeignName

· GET BusinessPartners('c1')/ForeignName

3.11.1 Metadata Definitions of Associations and Navigation
Properties

Associations and navigation properties are defined in the service metadata. Take orders and business partners,
for example:
<!-- section 1 -->

<Association Name="FK_Documents_BusinessPartners">

 <End Type="SAPB1.BusinessPartner" Role="BusinessPartners" Multiplicity="0..1" />

 <End Type="SAPB1.Document" Role="Documents" Multiplicity="*" />

 <ReferentialConstraint>

 <Principal Role="BusinessPartners">

 <PropertyRef Name="CardCode" />

 </Principal>

 <Dependent Role="Documents">

 <PropertyRef Name="CardCode" />

 </Dependent>

 </ReferentialConstraint>

</Association>

<!-- section 2 -->

<EntityType Name="BusinessPartner">

 <Key>

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 83

 <PropertyRef Name="CardCode"/>

 </Key>

 <Property Name="CardCode" Nullable="false" Type="Edm.String"/>

 <Property Name="CardName" Type="Edm.String"/>

 <Property Name="CardType" Type="SAPB1.BoCardTypes"/>

 ...

 <NavigationProperty Name="Orders" Relationship="SAPB1.FK_Documents_BusinessPartners"
FromRole="BusinessPartners" ToRole="Orders" />

 <NavigationProperty Name="Invoices"
Relationship="SAPB1.FK_Documents_BusinessPartners" FromRole="BusinessPartners"
ToRole="Invoices" />

 ...

</EntityType>

<!-- section 3 -->

<EntityType Name="Document">

 <Key>

 <PropertyRef Name="DocEntry"/>

 </Key>

 <Property Name="DocEntry" Nullable="false" Type="Edm.Int32"/>

 <Property Name="DocNum" Type="Edm.Int32"/>

 <Property Name="DocType" Type="SAPB1.BoDocumentTypes"/>

 ...

 <NavigationProperty Name="BusinessPartner"
Relationship="SAPB1.FK_Documents_BusinessPartners" FromRole="Documents"
ToRole="BusinessPartners" />

</EntityType>

<!-- section 4 -->

<AssociationSet Association="SAPB1.FK_Documents_BusinessPartners"
Name="FK_Orders_BusinessPartners">

 <End EntitySet="Orders" Role="Documents"/>

 <End EntitySet="BusinessPartners" Role="BusinessPartners"/>

</AssociationSet>

<AssociationSet Association="SAPB1.FK_Documents_BusinessPartners"
Name="FK_Invoices_BusinessPartners">

 <End EntitySet="Invoices" Role="Documents"/>

 <End EntitySet="BusinessPartners" Role="BusinessPartners"/>

</AssociationSet>

The metadata defines the association between BusinessPartners and Orders as follows:
· Section 1 defines a "1:*" (1:n) association between BusinessPartners and Documents, joined on the

condition BusinessPartners.CardCode = Documents.CardCode.

84
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

· Section 2 defines two navigation properties Orders and Invoices on entity type BusinessPartner.
· Section 3 defines a navigation property BusinessPartner on entity type Document.
· Section 4 defines two association sets with the same association FK_Documents_BusinessPartners. The

first association set is Orders and BusinessPartners and the second is Invoices and
BusinessPartners.

3.11.2 Retrieving navigation properties as entity

As long as navigation properties are defined on association ends, you can navigate back and forth between the
association ends. The navigation is not necessarily bidirectional; it can be unidirectional.
According to the metadata (section 2 in Metadata Definitions of Associations and Navigation Properties), a
navigation property Orders has been defined for entity type BusinessPartner (the type of entity set
BusinessPartners). To get the orders associated with business partner "c1", send the following request:
GET BusinessPartners('c1')/Orders

This request is equal to the following request:
GET Orders?$filter=CardCode eq 'c1'

According to the metadata (section 3 in Metadata Definitions of Associations and Navigation Properties), entity
type Document has a navigation property BusinessPartners. To get the customer associated with the order
(DocEntry: 1), send the following request:
GET Orders(1)/BusinessPartner

You can extend your request chain even further in the URL. For example, to get all orders of the customer who is
associated with order 1, send the following request:
GET Orders(1)/BusinessPartner/Orders

3.11.3 Retrieving navigation properties via $expand

With OData query option $select and $expand, the navigation properties can be retrieved just as other properties.
For example, to retrieve the customer as a property of an order, send the following request:
GET Orders(1)?$select=*,BusinessPartner&$expand=BusinessPartner

You can get the customer code property from an order and the foreign name property from the associated
customer by sending the following request:
GET Orders(1)?$select=CardCode,BusinessPartner/ForeignName&$expand=BusinessPartner

$expand can be applied to collections as well. For instance, you can send the following request to retrieve the
BusinessPartner properties of all orders:
GET Orders?$select=*,BusinessPartner&$expand=BusinessPartner

 Note
The following two requests have the same effect:
GET Orders(1)?$select=CardCode,BusinessPartner/ForeignName

GET Orders(1)?$select=CardCode

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 85

For the former, BusinessPartner/ForeignName is ignored as the navigation property
BusinessPartner is not expanded.

 Note
$expand working with collections may have performance issues. We recommend that you not send such
requests frequently.

3.12User-Defined Schemas

 Note
This feature is available in SAP Business One 9.1 patch level 03 and later.

A typical sales order returned by Service Layer:
{

 "DocEntry": 71,

 "DocNum": 51,

 "DocType": "dDocument_Items",

 "HandWritten": "tNO",

 "Printed": "psNo",

 ...

 "DocumentLines": [

 {

 "LineNum": 0,

 "ItemCode": "i1",

 "ItemDescription": "item 1",

 "Quantity": 10,

 "ShipDate": "2014-04-01",

 "Price": 100,

 ...

 },

 {

 "LineNum": 1,

 "ItemCode": "i2",

 "ItemDescription": "item 2",

 "Quantity": 8,

 "ShipDate": "2014-04-01",

 "Price": 120,

 ...

 }

],

86
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

 ...

}

If the existing data structure does not satisfy your needs or you want to restrict the field amount, you can create
your own schemas. Note that user-defined schemas are based on entities.

Prerequisites

Before working with a user-defined schema, ensure the following:
· You have created a schema file under the <Installation Directory>/ServiceLayer/conf folder.

 Note
If you want to send requests directly through a load balancer member which is installed on a different
machine from the load balancer, you must ensure a copy of the schema file exists also on the member
machine.

· You have defined the schema in the JSON format, according to your needs.

 Note
Any change to the schema file takes effect immediately after you save the file. You do not have to restart
the Service Layer service.

· If you want to use the default schema defined in the b1s.conf file instead of specifying the schema in
requests, you have made the schema file name identical to the value of the schema configuration option. For
more information, see Configuration Options for Service Layer.

3.12.1.1 Filter Fields

A company database usually contains many more fields than needed. You can define your own schemas with
"trimmed" data structures.

 Example
How to restrict data output to a limited number of fields
In the conf folder, create a file named marketingDocument.schema and edit the file as below:

{

 "Document": [

 "DocEntry",

 "DocNum",

 "DocumentLines",

],

 "DocumentLine": [

 "LineNum",

 "ItemCode",

 "Quantity"

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 87

]

}

This schema restricts output fields as follows:
o For type (EntityType or ComplexType in the metadata) Document (including all marketing

document entities): DocEntry, DocNum, and DocumentLines

o For type DocumentLine: LineNum, ItemCode, and Quantity

The service returns:
HTTP/1.1 200 OK

B1S-Schema: schema1.schema

...(other HTTP headers)...

{

 "DocEntry": 71,

 "DocNum": 51,

 "DocumentLines": [

 {

 "LineNum": 0,

 "ItemCode": "i1",

 "Quantity": 10

 },

 {

 "LineNum": 1,

 "ItemCode": "i2",

 "Quantity": 8

 }

]

}

 Note
The schema file is often named {xxx}.schema but that is not mandatory. You can use any name, for
example, myschema.
In SAP Business One 9.1 patch level 04 and later, a schema file named demo.schema is available after
installation. You can directly use it as follows:
GET /Orders

B1S-Schema: demo.schema

3.13User-Defined Fields (UDFs)

In SAP Business One 9.1 patch level 04 and earlier, user-defined fields (UDFs) are treated as dynamic properties
of an OData entity. An entity that has a dynamic property is of "open type", that is, in the EntityType XML node
in metadata, it has the attribute OpenType=true.

88
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

As of SAP Business One 9.1 patch level PL04, you can manage the metadata of UDFs and perform CRUD
operations on UDFs as on regular entities.
As of SAP Business One 9.1 patch level PL05, UDFs appear in the entity definition in metadata.

 Note
All UDFs in SAP Business One are prefixed with "U_".

3.13.1 Managing Metadata of UDFs

This feature is available in SAP Business One 9.1 patch level 04 and later.
You can perform CRUD operations on UDFs as on regular entities. However, you must be aware that DDL
operations on tables can be expensive in the SAP HANA database if the tables are referenced by many objects
(for example, procedures, functions, and views). It may take longer than expected to create or delete UDFs,
especially in marketing documents.

Creating UDFs

Use the POST method to create a UDF. For example, to create a UDF named "u1" on table OCRD (business partner
master data), send the following HTTP request:
POST /UserFieldsMD

{

 "Name": "u1",

 "Type": "db_Alpha",

 "Size": 10,

 "Description": "udf 1",

 "SubType": "st_None",

 "TableName": "OCRD"

}

The service returns:
HTTP/1.1 201 Created

{

 "Name": "u1",

 "Type": "db_Alpha",

 "Size": 10,

 "Description": "udf 1",

 "SubType": "st_None",

 "LinkedTable": null,

 "DefaultValue": null,

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 89

 "TableName": "OCRD",

 "FieldID": 0,

 "EditSize": 10,

 "Mandatory": "tNO",

 "LinkedUDO": null,

 "ValidValuesMD": []

}

For data consistency, when you create a UDF on a particular table, the UDF is automatically created on other
related tables. In the example above, in addition to OCRD, the UDF "u1" is also created on table ACRD (the archive
table for the Business Partner object). If you create a UDF on a sales order row table RDR1, the UDF is
automatically created on all marketing document line tables (for example, purchase order rows -POR1, delivery
rows - DLN1, invoice rows - INV1) as well as the archive table for document rows ADO1.
For more information, see Creating Entities.

Retrieving UDFs

To retrieve a UDF, send an HTTP request as the example below:
GET /UserFieldsMD(TableName='OCRD', FieldID=0)

For more information, see Retrieving Entities.

Querying UDFs
Standard OData query options are also supported for UDFs. For example, you've forgotten the table name and the
UDF ID but still remember the UDF name; you can query the UDF as follows:
GET /UserFieldsMD?$filter=Name eq 'u1'

The service returns:
{

 "value": [

 {

 "Name": "u1",

 "TableName": "ACRD",

 "FieldID": 0,

 ...

 ...

 },

 {

 "Name": "u1",

 "TableName": "OCRD",

 "FieldID": 0,

 ...

 }

]

}

90
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

From the response above, you can see that in addition to table OCRD, UDF "u1" has also been created on table
ACRD.
For more information, see Query Options.

Updating UDFs

To change the description and size of a UDF, send an HTTP request as the example below:
PATCH /UserFieldsMD(TableName='OCRD', FieldID=0)

{

 "EditSize": 20,

 "Description": "Internal Id",

}

 Note
You cannot change such properties as the file type (Type).

For more information, see Updating Entities.

Deleting UDFs

To delete a UDF, send an HTTP request as the example below:
DELETE /UserFieldsMD(TableName='OCRD', FieldID=0)

3.13.2 CRUD Operations

As with regular entities, you can perform CRUD operations on UDFs, query UDFs, and so on.

 Example
How to add Business Partners with a UDF "U_BPSpecRemarks"
Send the HTTP request:
POST /BusinessPartners

{

 "CardCode": "bpudf_004",

 ...

 "U_BPSpecRemarks": "First Business Partners with UDF remarks added by
Chrome."

}

The service returns:
HTTP/1.1 200 OK

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 91

{

 "CardCode": "bpudf_004",

 ...

 "U_BPSpecRemarks": "First Business Partners with UDF remarks added by
Chrome.",

 ...

}

 Example
How to query entities using UDFs
Send the HTTP request:
GET /BusinessPartners?$filter=startswith(U_BPSpecRemarks, 'First')

The service returns:
HTTP/1.1 200 OK

{

 "value": [

 {

 "CardCode": "bpudf_001",

 ...

 "U_BPSpecRemarks": "First Business Partners with UDF remarks.",

 },

 {

 "CardCode": "bpudf_003",

 ...

 "U_BPSpecRemarks": "First Business Partners with UDF remarks added

by Chrome.",

 },

 ...

]

}

3.14 User-defined Tables (UDTs)

You can directly access user-defined tables (UDTs) of "no object" type in SAP Business One 9.1 patch level 05 and
later. UDTs of "no object" type are treated as simple entities that only have one main table. UDTs of "no object"
type cannot be used by UDOs (UDOs use UDTs of type "master data", "master data rows", "document" or
"document rows").
In the following examples, we will add UDT "MYTBL" of type "no object", and then service layer will expose it as an
entity named "U_MYTBL".

92
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

3.14.1 Managing Metadata of UDTs

You can manage UDT metadata via service layer in SAP Business One 9.1 patch level 04 and later.

 Example
How to create UDT "MYTBL" as a "no object" table
Send the HTTP request:
POST /UserTablesMD

{

 "TableName": "MYTBL",

 "TableDescription": "My Table",

 "TableType": "bott_NoObject"

}

Note that:
o The table name uses capital letters. This name will be used when you get the metadata of this new

table via GET /UserTablesMD('MYTBL').
o The real table in the database is "@MYTBL". This name will be used when you add user-defined fields.

 Example
How to add fields "F1" to table "MYTBL"
Send the HTTP request to add field "F1" with type "Alphanumeric":
POST /UserFieldsMD

{

 "Name": "F1",

 "Type": "db_Alpha",

 "Size": 10,

 "Description": "Customer name",

 "SubType": "st_None",

 "TableName": "@MYTBL"

}

3.14.2 CRUD Operations

As with regular entities, you can perform CRUD operations on UDTs.
Service layer maps UDTs to entities by adding the prefix "U_". For example, UDT "MYTBL" gets the entity name
"U_MYTBL".

 Example
How to create entities for UDT "MYTBL"
Send the HTTP request:

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 93

POST /U_MYTBL

{

 "Code":"C",

 "Name":"CName",

 "U_F1":"test data"

}

How to retrieve the records of UDT "MYTBL" (Code is the key field)
Send the HTTP request:
GET /U_MYTBL('C')

Or
GET /U_MYTBL(Code='C')

How to get a key list of all user orders
Send the HTTP request:
GET /U_MYTBL?$select=Code

How to get a record whose name equals 'CName'
Send the HTTP request:
GET /U_MYTBL?$filter=Name eq 'CName'

How to update the record value of "U_F1"
Send the HTTP request:
PATCH /U_MYTBL('C')

{

 "U_F1": "test data - updated"

}

How to delete the record
Send the HTTP request:
DELETE /U_MYTBL('C')

3.15User-Defined Objects (UDOs)

 Note
CRUD operations are possible for UDOs in SAP Business One 9.1 patch level 03 and later.
You can manage UDO metadata in Service Layer in SAP Business One 9.1 patch level 04 and later.
You can access UDTs via Service Layer directly in SAP Business One 9.1 patch level 05 and later.

94
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

In SAP Business One 9.1 patch level 05 and later, information from UDTs, UDOs and UDFs is included in
OData metadata https://hanaserver:50000/b1s/v1/$metadata.
In SAP Business One 9.2 patch level 11 and later, UDO Cancel/Close function is supported.

Depending on your business needs, you can create your own objects for managing custom data and creating
custom functionality. Each user-defined object must be registered with one main user-defined table and,
optionally, with one or more child UDTs. Each UDT contains one or more user-defined fields (UDFs). The object
type of a main UDT must be either Master Data or Document, while the object type of a child UDT must be either
Master Data Rows or Document Rows.

3.15.1 Managing Metadata of UDOs

This feature is available in SAP Business One 9.1 patch level 04 and later.
Service Layer requires the same procedure to create a UDO as in the SAP Business One client application or via
the DI API. The following procedure illustrates how to create a UDO "MyOrder" with the following definition:

Main Table / Child Table UDT UDF Type

Main Table MyOrder Document

CustomerName Alphanumeric

DocTotal Units and Totals / Amount

Child Table MyOrderLines Document Rows

ItemName Alphanumeric

Price Units and Totals / Price

Quantity Units and Totals / Quantity

Procedure

1. To create the main table "MyOrder", send the following HTTP request:
POST /UserTablesMD

{

 "TableName": "MyOrder",

 "TableDescription": "My Orders",

 "TableType": "bott_Document"

}

The service returns:
HTTP/1.1 201 Created

{

 "TableName": "MYORDER",

 "TableDescription": "My Orders",

 "TableType": "bott_Document",

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 95

 "Archivable": "tNO",

 ...

}

 Note
The name is the unique identifier for a UDT and undergoes the following automatic changes after its
creation:
o A prefix "@" is added to the name.
o The name is converted to the upper case.

For example, if you define a UDT name as "MyOrder", the actual UDT name in the database is
"@MYORDER".
To obtain the metadata of this table, send the HTTP request:
GET /UserTablesMD('MYORDER')

2. Add UDFs to table "MyOrder".
1. To create field "CustomerName", send the following HTTP request:

POST /UserFieldsMD

{

 "Name": "CustomerName",

 "Type": "db_Alpha",

 "Size": 10,

 "Description": "Customer Name",

 "SubType": "st_None",

 "TableName": "@MYORDER"

}

2. To create field "DocTotal", send the following HTTP request:
POST /UserFieldsMD

{

 "Name": "DocTotal",

 "Type": "db_Float",

 "Description": "Total Amount",

 "SubType": "st_Sum",

 "TableName": "@MYORDER"

}

3. To create the child table "MyOrderLines", send the following HTTP request:
POST /UserTablesMD

{

 "TableName": "MyOrderLines",

 "TableDescription": "My Order Lines",

 "TableType": "bott_DocumentLines"

}

As with the main table, the actual name of this table is "@MYORDERLINES".

96
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

4. Add UDFs to table "MyOrderLines".
1. To create field "ItemName", send the following HTTP request:

POST /UserFieldsMD

{

 "Name": "ItemName",

 "Type": "db_Alpha",

 "Size": 10,

 "Description": "Item name",

 "SubType": "st_None",

 "TableName": "@MYORDERLINES"

}

2. To create field "Price", send the following HTTP request:
POST /UserFieldsMD

{

 "Name": "Price",

 "Type": "db_Float",

 "Description": "Unit Price",

 "SubType": "st_Price",

 "TableName": "@MYORDERLINES"

}

3. To create field "Quantity", send the following HTTP request:
POST /UserFieldsMD

{

 "Name": "Quantity",

 "Type": "db_Float",

 "Description": "Quantity",

 "SubType": "st_Quantity",

 "TableName": "@MYORDERLINES"

}

5. To register UDO "MyOrder", send the following HTTP request:
POST /UserObjectsMD

{

 "Code": "MyOrder",

 "Name": "My Orders",

 "TableName": "MyOrder",

 "ObjectType": "boud_Document",

 "UserObjectMD_ChildTables": [

 {

 "TableName": "MyOrderLines",

 "ObjectName": "MyOrderLines"

 }

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 97

]

}

 Note
The property name of a subobject collection is "<Subobject Code>Collection" and the UDT code is, by
default, the same as the UDT name. Therefore, if you intend to use a UDT as a child table for a UDO and
the UDT name (TableName) contains spaces, we recommend that you change the UDT code
(ObjectName) during the registration. For example, if a UDT code is "My Order Lines", the
corresponding property name would be "My Order LineCollection".

Adding User Keys

You can add user keys to user-defined tables. For example, to create a unique key on column CustomerName,
send the following HTTP request:
POST /UserKeysMD

{

 "TableName": "@MYORDER",

 "KeyIndex": "1",

 "KeyName": "IX_0",

 "Unique": "tYES",

 "UserKeysMD_Elements": [

 {

 "ColumnAlias": "CustomerName"

 }

]

}

The service returns:
{

 "TableName": "@MYORDER",

 "KeyIndex": "0",

 "KeyName": "IX_0",

 "Unique": "tYES",

 "UserKeysMD_Elements": [

 {

 "SubKeyIndex": "0",

 "ColumnAlias": "CustomerName"

 },

]

}

To get the metadata of this key, send the following HTTP request:
GET /UserKeysMD(TableName='@MYORDER', KeyIndex=0)

98
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

3.15.2 Creating Entity for a UDO

As with regular entities, you can perform CRUD operations on UDOs, query UDOs, create user-defined schemas
based on UDOs, and so on.
To create a UDO entity, send an HTTP request to add an order with 2 items, such as:
POST /MyOrder

{

 "U_CustomerName": "c1",

 "U_DocTotal": 620,

 "MyOrderLinesCollection": [

 {

 "U_ItemName": "item1",

 "U_Price": 100,

 "U_Quantity": 3

 },

 {

 "U_ItemName": "item2",

 "U_Price": 80,

 "U_Quantity": 4

 }

]

}

 Note
The property name of the sub object collection is "{sub-object-code}Collection", for example, the sub
object code is MyOrderLines (by default the same as the UDT name if you do not change it), so the
property name is MyOrderLinesCollection.

On success, the server replies as the follows:
HTTP/1.1 201 Created

{

 "DocEntry": 10,

 "DocNum": 2,

 ...

 "U_CustomerName": "c1",

 "U_DocTotal": 620,

 "MyOrderLinesCollection": [

 {

 "LineNum": 1,

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 99

 "U_ItemName": "item1",

 "U_Price": 100,

 "U_Quantity": 3

 },

 {

 "LineNum": 2,

 "U_ItemName": "item2",

 "U_Price": 80,

 "U_Quantity": 4

 }

]

}

When defining a schema file based on a UDO, the object name is required instead of the ID (which is the unique
identifier of a UDO). As the system does not prevent you from creating a UDO with a name identical to an existing
UDO or a system object, you must pay special attention to maintain the uniqueness of the UDO name. Note that
URL and request contents still require the UDO ID.

3.15.3 Retrieving Entity for UDO

You can get the order via a key field. DocEntry is the key field of the order.
GET /MyOrder(10)

Or
GET /MyOrder(DocEntry=10)

On success, HTTP code 200 is returned with the content of the object that is the same as the one returned by
add-entity.
HTTP/1.1 200 OK

{

 "DocEntry": 10,

 ...

}

Query options are also supported. You can get a key list of all user orders.
GET /MyOrder?$select=DocEntry

Service returns:
HTTP/1.1 200 OK

{

 "value": [

 {"DocEntry": 1},

 {"DocEntry": 2},

100
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

 ...

 {"DocEntry": 13}

],

}

To get user orders with specified customer name and total money greater than 1000:
GET /MyOrder?$filter=U_CustomerName eq 'c1' and U_DocTotal gt 1000

User-defined schema is also supported for UDO.
For example, you created a file named myobj.schema in the conf folder:
{

 "MyOrder": ["DocEntry", "U_CustomerName"],

 "MyOrderLines": ["U_ItemName", "U_Quantity"]

}

 Note
o Use UDO name (not UDO code) to define the schema if the name is not the same as the code.
o By default, the object name is the same as the object code (i.e. the unique ID), and the sub-object

name is the same as the sub-object code (i.e. the user table name). You can change the object name
or sub-object name during registration. Code will be used in URL and request content, and name will
be used in user-defined schema.

o UDO name may contain a space, for example, "Order Lines".
Then send the request:
GET /MyOrder(1)

B1S-Schema: myobj.schema

You get:
HTTP/1.1 200 OK

B1S-Schema: myobj.schema

{

 "DocEntry": 10,

 "U_CustomerName": "c1",

 "MyOrderLinesCollection": [

 {

 "U_ItemName": "item1",

 "U_Quantity": 3

 },

 {

 "U_ItemName": "item2",

 "U_Quantity": 4

 }

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 101

]

}

3.15.4 Updating Entity for UDO

You can update the order, for example, change the quantity of item2 from 4 to 5 for this sales order. Note:
U_DocTotal also needs to change as the quantity changes.
PATCH /MyOrder(10)

{

 "U_DocTotal": 700,

 "MyOrderLines": [

 {

 "LineNum": 2,

 "U_Quantity": 5

 }

]

}

On success, HTTP code 204 is returned without content.
HTTP/1.1 204 No Content

 Note
PUT/PATCH/MERGE are all supported for updating. PATCH and MERGE are the same. Refer to chapter
Updating Entities for differences between PATCH and PUT.

3.15.5 Deleting Entity for UDO

Use HTTP verb DELETE and the key fields to delete the entity.
DELETE /MyOrder(10)

On success, HTTP code 204 is returned without content.
HTTP/1.1 204 No Content

3.15.6 Canceling/Closing Entity for UDO

By default, you are not allowed to close or cancel the UDO. To enable this, first send a patch request to
UserObjectsMD as below:

102
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

PATCH UserObjectsMD('MyOrder')

{ "CanClose": "tYES", "CanCancel": "tYES" }

To cancel the order,
POST /MyOrder(10)/Cancel

To close the order,
POST /MyOrder(10)/Close

On success, HTTP code 204 is returned without content.
HTTP/1.1 204 No Content

The related metadata is as follows:
<EntitySet EntityType="SAPB1.MYORDER" Name="MyOrder"/>

<FunctionImport IsBindable="true" Name="Cancel">

<Parameter Name="MYORDERParams" Type="SAPB1.MYORDER"/>

</FunctionImport>

<FunctionImport IsBindable="true" Name="Close">

<Parameter Name="MYORDERParams" Type="SAPB1.MYORDER"/>

</FunctionImport>

3.16 Attachments

As of SAP Business One 9.1 patch level 12, version for SAP HANA, attachment manipulation is supported through
the Service Layer. The supported attachment type list is:
· pdf
· doc
· docx
· jpg
· jpeg
· png
· txt
· xls
· ppt

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 103

3.16.1 Setting up an Attachment Folder

An attachment folder is generally a shared folder on the Windows platform for the SAP Business One client.
Service Layer runs on Linux and thus is not allowed to directly access this shared folder. In order to make the
attachment folder accessible for Service Layer as well, the Common Internet File System (CIFS) is required. For
more information about CIFS, you can visit:
https://technet.microsoft.com/en-us/library/cc939973.aspx
https://www.samba.org/cifs/
Take the following steps to set up:
1. Create a network shared folder with read and write permissions on Windows (for example,

\\<hanaserver>\temp\SL\attachments2) and configure it as the attachment folder in General Settings in the
SAP Business One client.

2. Create a corresponding attachment directory on Linux, (for example, /mnt/attachments2).
3. Mount the Linux folder to the Windows folder by running a command such as this:

mount -t cifs -o username=xxxxx,password=******,file_mode=0777,dir_mode=0777
"//<hanaserver>/temp/SL/attachments2/" /mnt/attachments2

 Note
Remember to escape in case the user name or password contains any special characters (e.g. \, $). For
example:
mount -t cifs -o
username=global\\i066088,password=1234\$4321,file_mode=0777,dir_mode=0777
"//<hanaserver>/temp/andy/attachments2/" /mnt/attachments2

https://technet.microsoft.com/en-us/library/cc939973.aspx
https://www.samba.org/cifs/

104
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

Remember the shared folder is a network folder rather than a local folder on Windows. Otherwise, Service
Layer will not be able to access it.

 Example
How to auto mount when Linux server starts
To facilitate the configuration convenience for customers, /etc/fstab can be leveraged to automatically
mount to the Windows shared folder once the Linux server reboots. One approach to achieve this is as
follows:

1. Log in as a root user and create a credentials file (for example, /etc/mycifspass) with the following
content:
username=xxxxx

password=******

file_mode=0777

dir_mode=0777

2. Open the system configuration file /etc/fstab and append one line, as follows:
//<hanaserver>/temp/SL/attachments2/ /mnt/attachments2 cifs
credentials=/etc/mycifspass 0 0

3. Reboot the Linux server; the Windows shared folder is automatically mounted.

3.16.2 Uploading an Attachment

Considering that the source file to attach may be on Linux or on Windows, Service Layer has to support both of
these two cases.

3.16.2.1 Attach source file from Linux

For this case, upload the source file (for example, /home/builder/src_attachment/my_attach_1.dat) as
an attachment by sending a request such as:
POST /b1s/v1/Attachments2

{

 "Attachments2_Lines": [

 {

 "SourcePath": "/home/builder/src_attachment",

 "FileName": "my_attach_1",

 "FileExtension": "dat"

 }

]

}

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 105

On success, the response is as follows:
HTTP/1.1 201 Created

{

 "AbsoluteEntry": "1",

 "Attachments2_Lines": [

 {

 "SourcePath": "/home/builder/src_attachment",

 "FileName": "my_attach_1",

 "FileExtension": "dat",

 "AttachmentDate": "2016-03-25",

 "UserID": "1",

 "Override": "tNO"

 }

]

}

The source file is saved in the destination attachment folder on Linux (/mnt/attachments2).

Open the Windows folder (\\<hanaserver>\temp\SL\attachments); the source file is saved there as well.

106
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

3.16.2.2 Attach source file from Windows

One way to add an attachment on Windows is to use the HTTP POST method. The request must contain a
Content-Type header specifying a content type of multipart/form-data and a boundary specification as:
Content-Type: multipart/form-data;boundary=<Boundary>

The body is separated by the boundary defined in the Content-Type header, such as:
--<Boundary>

Content-Disposition: form-data; name="files"; filename="<file1>"

Content-Type: <content type of file1>

<file1 content>

--<Boundary>

Content-Disposition: form-data; name="files"; filename="<file2>"

Content-Type: <content type of file2>

<file2 content>

--<Boundary>--

For example, if you want to pack two files into one attachment to post, send the request as follows:
POST /b1s/v1/Attachments2 HTTP/1.1

Content-Type: multipart/form-data; boundary=WebKitFormBoundaryUmZoXOtOBNCTLyxT

--WebKitFormBoundaryUmZoXOtOBNCTLyxT

Content-Disposition: form-data; name="files"; filename="line1.txt"

Content-Type: text/plain

Introduction

B1 Service Layer (SL) is a new generation of extension API for consuming B1 objects

and services

via web service with high scalability and high availability.

--WebKitFormBoundaryUmZoXOtOBNCTLyxT

Content-Disposition: form-data; name="files"; filename="line2.jpg"

Content-Type: image/jpeg

<image binary data>

--WebKitFormBoundaryUmZoXOtOBNCTLyxT--

On success, the response is as follows:
HTTP/1.1 201 Created

{

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 107

 "odata.metadata" :
"https://hanaserver:50000/b1s/v1/$metadata#Attachments2/@Element",

 "AbsoluteEntry" : "3",

 "Attachments2_Lines" : [

 {

 "SourcePath" : "/tmp/sap_b1_i066088/ServiceLayer/Attachments2/",

 "FileName" : "line1",

 "FileExtension" : "txt",

 "AttachmentDate" : "2016-04-06",

 "UserID" : "1",

 "Override" : "tNO"

 },

 {

 "SourcePath" : "/tmp/sap_b1_i066088/ServiceLayer/Attachments2/",

 "FileName" : "line2",

 "FileExtension" : "png",

 "AttachmentDate" : "2016-04-06",

 "UserID" : "1",

 "Override" : "tNO"

 }

]

}

 Note
o The boundary MUST be prepended with two dashes (--) in the request body.
o The last boundary in the request body MUST be appended with two extra dashes (--).
o If Service Layer returns a message about creating a file error, it indicates the permission of temporary

attachment directory has been changed by someone accidentally. For this case, open a Linux
terminal with root user privilege and run the below commands to recover the permission.
sudo chown -R b1service0:b1service0 /tmp/sap_b1_b1service0
sudo chmod -R 755 /tmp/sap_b1_b1service0

3.16.3 Downloading Attachments

By default, the first attachment line is downloaded if there are multiple attachment lines in one attachment. To
download it, $value is required to be appended to the end of the attachment retrieval URL. For example:
GET /b1s/v1/Attachments2(3)/$value

On success, the response in browser is as follows:

108
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

If you want to download an attachment line other than the first attachment line, you need to specify the full file
name (including the file extension) in the request URL. For example:
GET /b1s/v1/Attachments2(3)/$value?filename='line2.png'

On success, the response in browser is as follows:

3.16.4 Updating Attachment

Service Layer allows you to update an attachment via PATCH and there are two typical cases for this operation.

 Example
How to update an existing attachment line
If the attachment line to update already exists, it is simply replaced by the new attachment line. For
example:
PATCH /b1s/v1/Attachments2(3) HTTP/1.1

Content-Type: multipart/form-data; boundary=WebKitFormBoundaryUmZoXOtOBNCTLyxT

--WebKitFormBoundaryUmZoXOtOBNCTLyxT

Content-Disposition: form-data; name="files"; filename="line1.txt"

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 109

Content-Type: text/plain

Introduction (Updated)

B1 Service Layer (SL) is a new generation of extension API for consuming B1
objects and services via web service with high scalability and high

availability.

--WebKitFormBoundaryUmZoXOtOBNCTLyxT--

On success, HTTP code 204 is returned without content.
HTTP/1.1 204 No Content

To check the updated attachment line, send a request such as:
GET /b1s/v1/Attachments2(3)/$value?filename='line1.txt'

On success, the response in browser is as follows:

 Example
How to add one attachment line if not existing
If the attachment line to update doesn't exist, the new attachment line is appended to the last existing
attachment line. For example:
PATCH /b1s/v1/Attachments2(3) HTTP/1.1

Content-Type: multipart/form-data; boundary=WebKitFormBoundaryUmZoXOtOBNCTLyxT

--WebKitFormBoundaryUmZoXOtOBNCTLyxT

Content-Disposition: form-data; name="files"; filename="line3.png"

Content-Type: image/jpeg

<binary data>

--WebKitFormBoundaryUmZoXOtOBNCTLyxT--

110
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

On success, HTTP code 204 is returned without content.
HTTP/1.1 204 No Content

To check the newly created attachment line, send a request as follows:
GET /b1s/v1/Attachments2(3)/$value?filename='line3.png'

On success, the response in browser is as follows:

 Note
o From the business logic perspective, it is not allowed to delete an attachment or attachment line.
o Due to security considerations, the attachment to upload MUST be less than 50M. If not, SL responds

with an error message as below:
413 Request Entity Too Large

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html>

 <head>

 <title>413 Request Entity Too Large</title>

 </head>

 <body>

 <h1>Request Entity Too Large</h1>

 The requested resource

/b1s/v1/Attachments2

 does not allow request data with POST requests, or the amount of data
provided in

 the request exceeds the capacity limit.

 <p>

 Additionally, a 413 Request Entity Too Large

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 111

 error was encountered while trying to use an ErrorDocument to
handle the request.

 </p>

 </body>

</html>

3.17Item Image and Employee Image

As of SAP Business One 9.1 patch level 12, version for SAP HANA, Service Layer introduces a new stream entity
ItemImages to support the CRUD operations of entity ItemImages. The metadata of this entity is:
<EntityType Name="ItemImage" m:HasStream="true">

 <Key>

 <PropertyRef Name="ItemCode"/>

 </Key>

 <Property Name="ItemCode" Nullable="false" Type="Edm.String"/>

 <Property Name="Picture" Nullable="false" Type="Edm.String"/>

</EntityType>

As of SAP Business One 9.3 patch level 12, version for SAP HANA, EmployeeImages are availabe for you in the
Service Layer.

3.17.1 Setting up an Item Image Folder

The item image folder is a shared folder on Windows platform for the SAP Business One client. To make it
accessible for Service Layer on Linux, CIFS is required. The setup steps for the item image folder are similar to
those of the attachment folder, as follows:
1. Create a shared folder with read and write permissions on Windows (for example,

\\<hanaserver>\temp\SL\itemimages) and configure it as the item image folder in General Settings of
the SAP Business One client. Make sure the folder path is a network path.

2. Create a folder on Linux, (for example, /mnt/itemimages).
3. Mount the Linux folder to the Windows folder by running a command such as:

mount -t cifs -o username=xxxxx,password=******,file_mode=0777,dir_mode=0777
"//<hanaserver>/temp/SL/itemimages" /mnt/itemimages

To auto mount when the Linux server starts, use the same steps as for the attachment folder.

3.17.2 Getting an Item Image or an Employee Image

From the SAP Business One client, you can specify an item image for an item or an employee image for an
employee. To get the item image via Service Layer, send a request such as:

112
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

GET /b1s/v1/ItemImages('i001')/$value

On success, the response in the browser is as follows:

 Note
$value is required to be appended to the end of the ItemImages retrieval URL.
If $value is omitted, the response is as follows:
{

 "odata.metadata":

"https://hanaserver:50000/b1s/v1/$metadata#ItemImages/@Element",

 "odata.mediaReadLink": "ItemImages('i001')/$value",

 "odata.mediaContentType": "image/jpeg",

 "ItemCode": "'i001'",

 "Picture": "sap_hana_1.jpg"

}

To get the employee image via Service Layer, send a request such as:
GET b1s/v1/EmployeeImages('EmployeeID')

3.17.3 Updating or Uploading an Item Image

Service Layer also allows you to upload or update an item image via PATCH. The request must contain a Content-
Type header specifying a content type of multipart/mixed and a boundary specification as:
Content-Type: multipart/form-data;boundary=<Boundary>

The body is separated by the boundary defined in the Content-Type header, such as:
--<Boundary>

Content-Disposition: form-data; name="files"; filename="<file>"

Content-Type: <content type of file>

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 113

<file content>

--<Boundary>--

The prerequisite is the item must exist. If the item does not have an image, for example, the item with ItemCode=
'i001', a Patch request such as the one below uploads an image. Otherwise, the request replaces the existing item
image.
PATCH /b1s/v1/ItemImages('i001') HTTP/1.1

Content-Type: multipart/form-data; boundary=----WebKitFormBoundaryUmZoXOtOBNCTLyxT

------WebKitFormBoundaryUmZoXOtOBNCTLyxT

Content-Disposition: form-data; name="files"; filename="sap_hana_2.jpg"

Content-Type: image/jpeg

<image binary data>

------WebKitFormBoundaryUmZoXOtOBNCTLyxT--

On success, HTTP code 204 is returned without content.
HTTP/1.1 204 No Content

To check the updated one, send a request such as:
GET /b1s/v1/ItemImages('i001')/$value

On success, the response in the browser is as follows:

 Note
For test purposes only, you can use the Chrome plug-in POSTMAN to update an item image.

114
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

3.17.4 Deleting an Item Image

To delete an item image, send a request such as:
DELETE /b1s/v1/ItemImages('i001')

On success, HTTP code 204 is returned without content.
HTTP/1.1 204 No Content

 Note
It is not allowed to post an item image. You can work around that limitation by uploading an item image
via PATCH.
It is not allowed to query item images. To work around this issue, query the ItemCode and Picure of the
entity Items instead.

3.18JavaScript Extension

As of SAP Business One 9.2 PL04, Service Layer allows users to develop their own extension application by
embedding JavaScript in the server side.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 115

3.18.1 JavaScript Parsing Engine

Service Layer uses Chrome V8 Engine (hereafter referred to as V8) as the JavaScript parsing engine due to the
following considerations:
· Parsing performance is of significant importance for Service Layer, and V8 is a script engine known for its

excellent performance.
· Service Layer and V8 are both written in C++. This would make the integration more seamless and easier.

The V8 JavaScript engine is an open source JavaScript engine developed by The Chromium Project for the Google
Chrome Web browser. For more information about V8, see https://developers.google.com/v8.

3.18.2 JavaScript Extension Framework

To facilitate the development of an extension application, Service Layer provides a JavaScript framework for
users to easily operate the business objects and services. The diagram below shows the basic structure of the
framework.

 Note
o Besides the DICore and SLCore, V8, as a new C++ component, is integrated into Service Layer.
o Service Layer adds the C++/JavaScript interop layer to be responsible for the interaction between

JavaScript and C++.

https://developers.google.com/v8

116
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

o On top of the interop layer, JavaScript SDK is designed to hide the interactive details and provide a
high level and simplified API for the application layer.

o Considering the fact that switching the context between C++ and JavaScript stack is not good for
performance, one target of providing the SDK is to decrease the frequency of context switching.

o Users' JavaScript Extension application is suggested to be developed based on the JavaScript SDK.

3.18.3 JavaScript Entry Function

As each executable file has a main entry function, each script file has to define entry functions. Conventionally, it
is better to define four entry functions in each script file, corresponding to the CRUD operations on entities.
Each entry function has a same-name HTTP method. On receiving a request, the entry function having the same
name as the http method of this request is triggered.

//The entry function for http request with the GET method

function GET(){

...

}

//The entry function for http request with the POST method

function POST(){

...

}

//The entry function for http request with the PATCH method

function PATCH(){

...

}

//The entry function for http request with the DELETE method

function DELETE(){

...

}

 Note
Due to a keyword compatibility issue in JavaScript, each entry function should be in uppercase; otherwise
the function will not be recognized.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 117

3.18.4 JavaScript URL Mapping

Script files are triggered to run by sending requests to the specific script URL. To differentiate the script URL from
a regular URL, Service Layer provides a specific URL resource path for scripts by appending /script to the
original path /b1s/v1 as below:

/b1s/v1/script/

Considering the fact that different partners might define the script with the same name, Service Layer identifies
which script to run by combining the partner name and the script name as the unique identifier. The mapping rule
for the URL pattern is:

/b1s/v1/script/{{partner name}}/{{script name}}

Requests sent to URLs with the above pattern are dispatched to the corresponding script function defined by the
corresponding partner.

 Example
The following request will trigger the execution of the function POST defined in item.js provided by
partner mtcsys.
POST /b1s/v1/script/mtcsys/items

 Note
A prerequisite is to ensure the script file with the corresponding ard file are deployed into SLD by the
partner. For more details about how to deploy scripts, please refer to the chapter JavaScript Deployment.

3.18.5 JavaScript SDK

Similar to the DIAPI, the JavaScript SDK is intended to provide a group of APIs for programmers to easily operate
on business services and business Objects. The APIs consist of entity CRUD, entity query, transactions,
exceptions and http request/response.
JavaScript, as a weak-typed programming language, has many built-in favorable dynamic features. However, for
the sake of programming experience and coding efficiency, the JavaScript SDK is designed like a static-language
library, so as to make the most use of the auto-complete and IntelliSense functionalities provided by the modern
IDE. The recommended one is the Visual Studio 2013/2015 with a Node.js plug-in
(https://www.visualstudio.com/en-us/features/node-js-vs.aspx).
Of course, you can also choose to program dynamically and enjoy the flexible features built-in with JavaScript.

 Note
This SDK is designed to purposely follow the Common JavaScript Specification and approximates the
Node.js grammar, which is exactly the reason why the Node.js plug-in is recommended.

https://www.visualstudio.com/en-us/features/node-js-vs.aspx

118
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

3.18.5.1 Http Request API

The http request functions listed below are packaged in the module HttpModule.js, which is an essential
module, required to handle http requests.

API Name API Description

getContet() Returns the raw content from the request payload.

getJsonObject() Returns the JSON format of the request payload.

getMethod() Returns the http Verb, e.g. GET, POST, PATCH, DELETE.

getContentType()
Returns the MIME type of the request body (e.g.
APPLICATION/JSON)

getParameter(name)
Returns the value of a request parameter as a String, or null if the
parameter does not exist.

getParameterNames()
Returns an array of String objects containing the names of the
parameters contained in this request.

getEntityKey() Returns the entity key from the URL resource part.

getHeader(name) Returns the value of the specified request header as a String.

3.18.5.2 Http Response API

The http response functions listed below are packaged in the module HttpModule.js, which is an essential
module, required to handle http response.

API Name API Description

setHeader(name, value) Adds a response header with the given name and value.

setContentType(contentType) Sets the content type of the response being sent to the client.

setCharSet(charset)
Sets the character encoding (MIME charset) of the response being
sent to the client, for example, to UTF-8.

setStatus(status) Sets the status code for this response.

setContent(content) Sets the content in the response body

send(status, content)
Sends back the response to the client with the optional http status
and content

 Example
To handle a request such as the one below,

PATCH /b1s/v1/script/mtcsys/items('i001')?key1=val1 & key2=val2

DataServiceVersion:3.0

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 119

{

 "ItemName": "new name"

}

apply the following script:
var http = require('HttpModule.js');

function PATCH() {

 console.log("testing the http request and http response API...")

 var ret = {};

 ret.content = http.request.getJsonObj();

 ret.method = http.request.getMethod();

 ret.contentType = http.request.getContentType();

 ret.dataServiceVersion = http.request.getHeader("DataServiceVersion");

 ret.paramNames = http.request.getParameterNames();

 if (ret.paramNames && ret.paramNames.length) {

 ret.paramNames.forEach(function (param) {

 ret[param] = http.request.getParameter(param);

 });

 }

 ret.key = http.request.getEntityKey();

 http.response.setContentType(http.ContentType.APPLICATION_JSON);

 http.response.setStatus(http.HttpStatus.HTTP_OK);

 http.response.setContent(ret);

 http.response.send();

}

On success, Service Layer returns:
HTTP/1.1 200 OK

{

 "content": {

 "ItemName": "new name"

 },

 "method": "PATCH",

 "contentType": "text/plain;charset=UTF-8",

 "dataServiceVersion": "3.0",

 "paramNames": [

 "key1",

120
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

 "key2"

],

 "key1": "val1",

 "key2": "val2",

 "key": "'i001'"

}

 Note
o Similar to Node.js, require is a global function to import a module and return a reference to that

module. The above example indicates http is a reference of the module HttpModule.js.
o request and response are two members of http, representing a pre-created HttpRequest

instance and an HttpResponse instance, respectively.
o To facilitate HTTP programming, module HttpModule.js also defines HTTP utility constants, for

example, HttpStatus, ContentType.

3.18.5.3 Entity CRUD API

Each exposed entity supports CRUD operations by default. The relevant APIs are packaged in the module
ServiceLayerContext.js.
· For most cases, to perform CRUD operations on an entity, you first must create an entity instance, if the

entity name is known in advance. Then call the following group of APIs defined in the prototype of EntitySet:
Prototype of EntitySet

API Name API Description

add(content, callback)
Creates an entity by the content and the optional callback function
on creation.

get(key, callback)
Retrieves an entity by the key and the optional callback function on
retrieval.

update(content, key,
callback)

Updates an entity by the content, key and the optional callback
function on update.

remove(key, callback)
Removes an entity by the key and the optional callback function on
removal.

... ...

· For the scenario where the entity name is not know in advance or the entity is a dynamically created UDO, you
first must create a ServiceLayerContext instance. Then call the following group of APIs against this
instance.
Prototype of ServiceLayerContext

API Name API Description

add(name, content, callback)
Creates an entity by the name, content and the optional callback
function on creation.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 121

API Name API Description

get(name, key, callback)
Retrieves an entity by the name, key, and the optional callback
function on retrieval.

update(name, content, key,
callback)

Updates an entity by the name, content and key and the optional
callback function on update.

remove(name, key, callback)
Removes an entity by the name, key and the optional callback
function on removal.

... ...

 Example
To handle a request such as the one below,

POST /b1s/v1/script/mtcsys/test_items_more

apply the following script:
var ServiceLayerContext = require('ServiceLayerContext.js');

var Item = require('EntityType/Item.js');

var http = require('HttpModule.js');

var test_item_code = "i001";

function POST() {

 var slContext = new ServiceLayerContext();

 var ret = [];

 var item = new Item();

 item.ItemCode = test_item_code;

 var dataSrvRes = slContext.Items.add(item);

 if (!dataSrvRes.isOK()) {

 throw http.ScriptException(http.HttpStatus.HTTP_BAD_REQUEST, "create
entity failure")

 }

 ret.push({ "operation": dataSrvRes.operation, "status": dataSrvRes.status
});

 var key = test_item_code;

 var dataSrvRes = slContext.Items.get(key);

 if (!dataSrvRes.isOK()) {

 throw
http.ScriptException(http.HttpStatus.HTTP_INTERNAL_SERVER_ERROR, "retrieve
entity failure")

 }

122
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

 ret.push({ "operation": dataSrvRes.operation, "status": dataSrvRes.status
});

 item.ItemName = 'new_item_name';

 dataSrvRes = slContext.update("Items", item, key);//equivalent to

slContext.Items.update(item, key);

 if (!dataSrvRes.isOK()) {

 throw
http.ScriptException(http.HttpStatus.HTTP_INTERNAL_SERVER_ERROR, "update
entity failure")

 }

 ret.push({ "operation": dataSrvRes.operation, "status": dataSrvRes.status
});

 dataSrvRes = slContext.remove("Items", key);//equivalent to
slContext.Items.remove(key);

 if (!dataSrvRes.isOK()) {

 throw
http.ScriptException(http.HttpStatus.HTTP_INTERNAL_SERVER_ERROR, "delete
entity failure")

 }

 ret.push({ "operation": dataSrvRes.operation, "status": dataSrvRes.status
});

 http.response.send(http.HttpStatus.HTTP_OK, ret);

}

On success, Service Layer returns:
HTTP/1.1 200 OK

[

 {

 "operation": "add",

 "status": 201

 },

 {

 "operation": "get",

 "status": 200

 },

 {

 "operation": "update",

 "status": 204

 },

 {

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 123

 "operation": "remove",

 "status": 204

 }

]

3.18.5.4 Entity Query API

Query APIs are packaged in the module ServiceLayerContext.js, and similar to the CRUD API, they are
defined both on the EntitySet and the ServiceLayerContext prototype.
Prototype of EntitySet

API Name API Description

query(queryOption, isCaseInsensitive)
Performs a case-sensitive or case-insensitive query and
return the entities satisfying the query options.

count(queryOption, isCaseInsensitive)
Performs a case-sensitive or case-insensitive query and
return the number of the entities satisfying the query
options.

... ...

Prototype of ServiceLayerContext

API Name API Description

query(name, queryOption, isCaseInsensitive)

Performs a case-sensitive or case-insensitive
query and return the entities with the given name
and satisfying the query options.

count(name, queryOption, isCaseInsensitive)
Performs a case-sensitive or case-insensitive
query and return the number of the entities with
the given name and satisfying the query options.

... ...

 Note
By default, the query is case-sensitive, due to the default Unicode collation for SAP HANA database.
Specifying the flag isCaseInsensitive as true would issue a case insensitive query. However, the
query performance would not be as efficient as with a case-insensitive query.
As of SAP Business One 9.2 PL07, version for SAP HANA, case-insensitive query is supported.

 Example
To handle a request such as the one below,
GET /b1s/v1/script/mtcsys/test_query_businesspartner

apply the following script:
var ServiceLayerContext = require('ServiceLayerContext.js');

var http = require('HttpModule.js');

124
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

function GET() {

 var queryOption = "$select=CardName, CardCode &
$filter=contains(CardCode, 'c1') & $top=5 & $orderby=CardCode";

 var slContext = new ServiceLayerContext();

 var retCaseSensitive = slContext.BusinessPartners.query(queryOption);

 var retCaseInsensitive = slContext.query("BusinessPartners", queryOption,
true);

 http.response.setStatus(http.HttpStatus.HTTP_OK);

 http.response.setContent({ "CaseSensitive": retCaseSensitive.toArray(),
"CaseInsensitive": retCaseInsensitive.toArray() });

 http.response.send();

}

On Success, Service Layer returns:
HTTP/1.1 200 OK

{

 "CaseSensitive": [

 {

 "CardCode": "c1",

 "CardName": "customer c11"

 }

],

 "CaseInsensitive": [

 {

 "CardCode": "c1",

 "CardName": "customer c11"

 },

 {

 "CardCode": "C11",

 "CardName": null

 },

 {

 "CardCode": "C12",

 "CardName": null

 }

]

}

 Example
To handle a case insensitive request:

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 125

GET /b1s/v1/BusinessPartners?$filter=contains(CardCode,
'c2')&$select=CardCode

B1S-CaseInsensitive: true

On success, Service Layer returns:
HTTP/1.1 200 OK

{

 "value": [

 {

 "CardCode": "C20000"

 },

 {

 "CardCode": "C23900"

 },

 {

 "CardCode": "c21"

 },

 {

 "CardCode": "c22"

 }

]

}

3.18.5.5 Transaction API

Transaction APIs, such as those listed below, are packaged in the module ServiceLayerContext.js, which is
an essential module, required to control transactions.

API Name API Description

startTransaction Starts a transaction.

commitTransaction Commits a transaction.

rollbackTransaction Rollbacks a transaction

isInTransaction Returns true if the current operation is in a transaction

 Example
To handle a request such as the one below,

POST /b1s/v1/script/mtcsys/test_create_businesspartner

[

 {

126
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

 "CardCode": "c001",

 "CardName": "c001"

 },

 {

 "CardCode": "c002",

 "CardName": "c002"

 },

 {

 "CardCode": "c003",

 "CardName": "c003"

 },

 {

 "CardCode": "c004",

 "CardName": "c004"

 },

 {

 "CardCode": "c005",

 "CardName": "c005"

 }

]

apply the following script:
var ServiceLayerContext = require('ServiceLayerContext.js');

var http = require('HttpModule.js');

var BusinessPartner = require('EntityType/BusinessPartner.js');

function POST() {

 var slContext = new ServiceLayerContext();

 var bpList = http.request.getJsonObj();

 if (!(bpList instanceof Array)) {

 throw http.ScriptException(http.HttpStatus.HTTP_BAD_REQUEST, "invalid
format of payload");

 }

 slContext.startTransaction();

 for (var i = 0; i < bpList.length; ++i) {

 var res = slContext.BusinessPartners.add(bpList[i]);

 if (!res.isOK()) {

 slContext.rollbackTransaction();

 throw http.ScriptException(http.HttpStatus.HTTP_BAD_REQUEST,
res.getErrMsg());

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 127

 }

 };

 slContext.commitTransaction();

 http.response.setContentType(http.ContentType.TEXT_PLAIN);

 http.response.send(http.HttpStatus.HTTP_OK, "transaction committed");

}

On Success, Service Layer returns:
HTTP/1.1 200 OK

transaction committed

Send this request again, Service Layer returns:
HTTP/1.1 400 Bad Request

{

 "error" : {

 "code" : 600,

 "message" : {

 "lang" : "en-us",

 "value" : "1320000140 - Business partner code 'c001' already
assigned to a business partner; enter a unique business partner code"

 }

 }

}

 Note
o Programmers should be aware that transaction operations are expensive and big transactions

degrade Web service throughput. Thus, Service Layer imposes a limitation on the transaction size.
The total operations in one transaction should be no more than 10.

o Please keep in mind that the following transactions should be called as pairs:
startTransaction/commitTransaction or startTransaction/rollbackTransaction.

3.18.5.6 Exception API

3.18.5.6.1 Compile Exception

Service Layer responds with an error message to the client if there is a compilation error in a user's script.

128
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

 Example
var Document = require('EntityType/Document.js');

//type mistake: ';' should be ','

var line = Document.DocumentLine.create({

 ItemCode: 'i001'; Quantity: 2, UnitPrice: 10

});

var lines = new Document.DocumentLineCollection();

lines.add(line);

The above code would result in an error message such as the one below:
{

 "error": {

 "code": 511,

 "message": {

 "lang": "en-us",

 "value": "Script error: compile error [SyntaxError: Unexpected token
;]."

 }

 }

}

3.18.5.6.2 Runtime Exception

Service Layer responds with an error message to the client if there is a runtime error in a user's script.

 Example
var ServiceLayerContext = require('ServiceLayerContext.js');

//var Bank = require('EntityType/Bank.js');

var bank = new Bank();

bank.BankCode = 'bank01';

var res = new ServiceLayerContext().Banks.add(bank);

if (!res.isOK) {

}

The above code would result in an error message such as the one below:
HTTP/1.1 400 Bad Request

{

 "error": {

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 129

 "code": 512,

 "message": {

 "lang": "en-us",

 "value": "Script error: runtime error [ReferenceError: Bank is not
defined]."

 }

 }

}

3.18.5.6.3 User Exception

Service Layer also allows users to explicitly propagate exceptions by throwing ScriptException exported from
the http module.

 Example
var ServiceLayerContext = require('ServiceLayerContext.js');

var Order = require('EntityType/Document.js');

var http = require('HttpModule.js');

var slContext = new ServiceLayerContext();

var res = slContext.Orders.get(10000);

if (!res.isOK()) {

 throw new http.ScriptException(http.HttpStatus.HTTP_NOT_FOUND, "the given
order is not found");

}

The above code would result in an error message such as the one below:
HTTP/1.1 404 Not Found

{

 "error": {

 "code": 600,

 "message": {

 "lang": "en-us",

 "value": "the given order not found"

 }

 }

}

130
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

3.18.6 Logging

Currently, debugging script is not supported. However, users are allowed to log the key information during script
programming by using the API console.log:

console.log('Hello, Service Layer Scripting!');

 Note
console is a global object. Literally, the output of this object should be printed in the console. However,
considering Service Layer is a backend service, the output is redirected to log files under {SL
Installation Path}/logs/script/.

3.18.7 JavaScript SDK Generator Tool

Considering that in each patch there might be new business objects exposed or new changes made on the
existing objects, the SDK would be adjusted accordingly to adapt to the changes.
To manually maintain the SDK would not only need huge efforts, but also would be error-prone. To automatically
address this issue, a tool named Metadata2JavaScript is provided to generate the SDK according to the
metadata, as metadata reflects all changes on the business objects.
This tool supports generating the SDK in two ways:
· From a local metadata file:

Metadata2JavaScript -a {local metadata file} -o {output folder, default is
./b1s_sdk}

or
Metadata2JavaScript --addr {local metadata file} --output {output folder, default
is ./b1s_sdk}

For example:
Metadata2JavaScript -a metadata.xml -o ./output

· From a remote Service Layer instance:
Metadata2JavaScript -a {SL base url} -u {user} -p {password} -c {company} -o
{output folder, default is ./b1s_sdk}

or
Metadata2JavaScript --addr {SL base url} --user {user} --password {password} --
company {company} --output {output folder, default is ./b1s_sdk}

For example:
Metadata2JavaScript --addr https://hanaserver:50000/b1s/v1/ --user manager --
password 1234 --company SBODEMOUS

 Note
This tool is released together with Service Layer and is available in the bin folder of the Service Layer
installation path.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 131

As this tool depends on JAVA JRE, before running it, make sure the relevant JAVA environment variables
are correctly exported as below:
export JAVA_HOME=/usr/sap/SAPBusinessOne/Common/sapjvm_8/jre

export PATH=$JAVA_HOME/bin:$PATH

3.18.8 JavaScript Deployment

Service Layer reuses the extension manager to manage the life cycle of script files. Similar to the DIAPI add-on,
extension applications developed by Service Layer are deployed to SLD as well.
Assume you have a script file Items.js; take the following steps to deploy it:
1. Create an ard file named Items.ard in the below format to describe the meta of this script file. Meanwhile,

the ard file can also be used to determine the script URL path.
<?xml version="1.0" encoding="utf-8"?>

<AddOnRegData xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 SlientInstallation="" SlientUpgrade="" Partnernmsp="mtcsysnm"
SchemaVersion="3.0"

 Type="ServiceLayerScript" OnDemand="" OnPremise=""
ExtName="ItemsExt"

 ExtVersion="1.00" Contdata="sa" Partner="mtcsys" DBType="HANA"

ClientType="S">

 <ServiceLayerScripts>

 <Script Name="items" FileName="Items.js"></Script>

 </ServiceLayerScripts>

 <XApps>

 <XApp Name="" Path="" FileName="" />

 </XApps>

</AddOnRegData>

2. Compress the ard file and script file into a zip file (e.g. Items.zip).
3. Upload Items.zip to the extension manager from the Extension Import Wizard.

132
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

4. From the Extension Assignment Wizard, assign the extension application to one company.

5. Log in to the company with Service Layer and access the script with the following URL:
/b1s/v1/script/mtcsys/items

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 133

 Note
o The script URL is a combination of partner name and script name separated by a '/' appended to the

Service Layer base URL /b1s/v1/.
o Currently, Service Layer does not support compressing multiple script files into one ard file.
o For more details about how to deploy extension applications, please reference the guide How to

Package and Deploy SAP Business One Extensions for Lightweight Deployment.
o In the ard file, do not name the value of the attribute Partner as test, as test is a reserved word

for internal testing.

3.18.9 Typical User Cases of Applying Script

3.18.9.1 Complex Transactions

Scripting can be used in transaction scenarios, which is an important complement to the OData Batch operations.
The following is an example for adding an order and a delivery based on the order in one transaction, which would
be impossible without scripting.

 Example
var ServiceLayerContext = require('ServiceLayerContext.js');

var http = require('HttpModule.js');

var Order = require('EntityType/Document.js');

var DeliveryNote = require('EntityType/Document.js');

/*

 * Entry function for the POST http request.

 *

 */

function POST() {

 var order = new Order();

 order.CardCode = 'c1';

 order.DocDate = new Date();

 order.DocDueDate = new Date();

 var line = new Order.DocumentLine();

 line.ItemCode = 'i1';

 line.Quantity = 1;

 line.UnitPrice = 10;

134
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

 var line2 = new Order.DocumentLine();

 line2.ItemCode = 'i2';

 line2.Quantity = 1;

 line2.UnitPrice = 10;

 order.DocumentLines = new Order.DocumentLineCollection();

 order.DocumentLines.add(line);

 order.DocumentLines.add(line2);

 var slContext = new ServiceLayerContext();

 //start the transaction

 slContext.startTransaction();

 var res = slContext.Orders.add(order);

 if (!res.isOK()) {

 slContext.rollbackTransaction();

 return http.response.send(http.HttpStatus.HTTP_BAD_REQUEST, res.body);

 }

 //get the newly created order from the response body.

 var newOrder = Order.create(res.body);

 //create a delivery based on the order

 var deliveryNote = new DeliveryNote();

 deliveryNote.DocDate = newOrder.DocDate;

 deliveryNote.DocDueDate = newOrder.DocDueDate;

 deliveryNote.CardCode = newOrder.CardCode;

 deliveryNote.DocumentLines = new DeliveryNote.DocumentLineCollection();

 for (var lineNum = 0; lineNum < order.DocumentLines.length; ++lineNum) {

 var line = new DeliveryNote.DocumentLine();

 line.BaseType = 17;

 line.BaseEntry = newOrder.DocEntry;

 line.BaseLine = lineNum;

 deliveryNote.DocumentLines.add(line);

 }

 res = slContext.DeliveryNotes.add(deliveryNote);

 if (!res.isOK()) {

 slContext.rollbackTransaction();

 return http.response.send(http.HttpStatus.HTTP_BAD_REQUEST, res.body);

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 135

 }else{

 slContext.commitTransaction();

 return http.response.send(http.HttpStatus.HTTP_CREATED, res.body);

 }

}

3.18.9.2 Customized Business Logic (e.g. UDO)

Another typical case for scripting is to add customized business logic during the process of operating user-
defined objects (UDO). The following is an example for performing some validations and calculating the DocTotal
when creating the UDO named MyOrder.

 Example
POST /b1s/v1/script/mtcsys/test_myorder

{

 "U_CustomerName": "c1",

 "U_DocTotal": 0,

 "MyOrderLinesCollection": [

 {

 "U_ItemName": "i1",

 "U_Price": 100,

 "U_Quantity": 3

 },

 {

 "U_ItemName": "i2",

 "U_Price": 80,

 "U_Quantity": 4

 }

]

}

Apply the following script to handle the above request:
function POST() {

//Before creating the UDO, users are allowed to add extra logic.

 var myOrder = http.request.getJsonObj();

 var slContext = new ServiceLayerContext();

//Example 1 : added logic to validate if each item exists and the item stock is

enough.

136
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

 myOrder.MyOrderLinesCollection.forEach(function (line) {

 var dataSvcRes = slContext.Items.get(line.U_ItemName);

 if (!dataSvcRes.isOK()) {

 throw new http.ScriptException(http.HttpStatus.HTTP_NOT_FOUND, "item
not found");

 } else {

 //Convert weak type to strong type by calling Item.create. The
conversion is not a must.

 //You can also use dataSvcRes.body.QuantityOnStock

 var item = Item.create(dataSvcRes.body);

 if (item.QuantityOnStock < line.U_Quantity) {

 throw new http.ScriptException(http.HttpStatus.HTTP_BAD_REQUEST,
"not enough items on stock");

 }

 }

 });

//Example 2 : added logic to calculate the DocTotal

 myOrder.U_DocTotal = 0;

 myOrder.MyOrderLinesCollection.forEach(function (line) {

 myOrder.U_DocTotal += (line.U_Price * line.U_Quantity);

 });

//Add this UDO

 var res = slContext.add("MyOrder", myOrder);

 if (res.isOK()) {

 http.response.send(http.HttpStatus.HTTP_CREATED, res.body);

 } else {

 http.response.send(http.HttpStatus.HTTP_BAD_REQUEST, res.body);

 }

}

3.18.10 Consume Script Service from .Net Application

For purposes of flexibility, SL allows the response from the script to be highly-customized. It is not appropriate to
define the fixed metadata for the scripting, and as such, using the single WCF framework is not possible to
consume the script service. As an alternative, it is suggested to program with the .NET Web Http library mixed
with WCF, illustrated with the below code snippet.
[TestFixture]

 class ScriptOrdersTest : AppCommon.GeneralTestGroup

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 137

 {

 [SetUp]

 public void setup()

 {

 ServicePointManager.ServerCertificateValidationCallback += delegate(object
sender, X509Certificate cert, X509Chain chain, SslPolicyErrors ssl) { return true; };

 ServicePointManager.Expect100Continue = false;

 ServicePointManager.MaxServicePointIdleTime = 2000;

 }

 private string m_cookie = AppCommon.WebConnection.Instance.SessionID;

 private Uri m_baseUri = new Uri(AppCommon.ConfigInfo.Instance().SL_URL);

 private int m_docEntry = 0;

 [Test]

 public void test01_create()

 {

 Document order = new Document();

 order.CardCode = "c1";

 order.DocDate = DateTime.Now;

 order.DocDueDate = DateTime.Now;

 {

 DocumentLine line = new DocumentLine();

 line.LineNum = 1;

 line.ItemCode = "i1";

 line.Quantity = 1;

 line.UnitPrice = 10;

 order.DocumentLines.Add(line);

 }

 {

 DocumentLine line = new DocumentLine();

 line.LineNum = 2;

 line.ItemCode = "i2";

 line.Quantity = 1;

 line.UnitPrice = 10;

 order.DocumentLines.Add(line);

 }

 try

 {

 var setting = new JsonSerializerSettings() { NullValueHandling =
NullValueHandling.Ignore };

138
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

 string json = JsonConvert.SerializeObject(order, setting);

 var data = Encoding.ASCII.GetBytes(json);

 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(new
Uri(m_baseUri, "script/test/test_orders"));

 request.CachePolicy = new

System.Net.Cache.RequestCachePolicy(System.Net.Cache.RequestCacheLevel.NoCacheNoStore)
;

 request.Method = "POST";

 request.KeepAlive = false;

 request.Headers["Cookie"] = m_cookie;

 request.ContentType = "application/json;odata=minimalmetadata";

 request.ContentLength = data.Length;

 using (var stream = request.GetRequestStream())

 {

 stream.Write(data, 0, data.Length);

 }

 HttpWebResponse response = (HttpWebResponse)request.GetResponse();

 Assert.AreEqual(response.StatusCode, HttpStatusCode.Created);

 var responseString = new
StreamReader(response.GetResponseStream()).ReadToEnd();

 Document newEntity =
JsonConvert.DeserializeObject<Document>(responseString);

 Assert.IsTrue(newEntity.DocEntry > 0);

 Assert.AreEqual(newEntity.DocumentLines.Count(),

order.DocumentLines.Count());

 response.Close();

 m_docEntry = newEntity.DocEntry;

 }

 catch (WebException ex)

 {

 WebResponse response = ex.Response;

 if (response == null)

 {

 throw SetResultMessage(ex);

 }

 var responseString = new
StreamReader(response.GetResponseStream()).ReadToEnd();

 throw SetResultMessage(new Exception(responseString));

 }

 catch (Exception ex)

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 139

 {

 throw SetResultMessage(ex);

 }

 }

3.19 Cross Origin Resource Sharing (CORS)

As of SAP Business One 9.1 patch level 08, version for SAP HANA, CORS is supported to allow trusted origins to
access the resource of Service Layer. For more information about CORS, please check the links below:
http://enable-cors.org/
http://www.html5rocks.com/en/tutorials/cors/#toc-withcredentials

3.19.1 Enabling CORS

By default, a cross domain request is rejected due to the security settings of the browser. To enable CORS, open
b1s.conf and append two configuration items. For example:
 "CorsEnable": true,

 "CorsAllowedOrigins": "http://host1:8080;https://host2:8443"

You can refer to Configuration Options for Service Layer for more details about the CORS configurations.

3.19.2 Enable to Configure Allowed Headers

As of SAP Business One 9.2, version for SAP HANA patch 07, request headers are allowed to configure in
b1s.conf.
By default, only content-type and accept are allowed in the CORS process. However, under some conditions,
other headers are needed, e.g. B1S-CaseInsensitive. To satisfy this requirement, append the configuration
option CorsAllowedHeaders in b1s.conf. For example:
"CorsAllowedHeaders":"content-type, accept, B1S-CaseInsensitive"

 Note
You can refer to Configuration Options for Service Layer for more details about the CORS configurations.

3.19.3 CORS process

Once CORS is enabled, browsers first issue an OPTIONS request (a preflight request), which is like asking the
server for permission to make the actual request. Once permissions have been granted, the browser makes the

http://enable-cors.org/
http://www.html5rocks.com/en/tutorials/cors/#toc-withcredentials

140
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

actual request. The browser handles the details of these two requests transparently. The preflight response can
also be cached so that it is not issued on every request. Take the requests received by Service Layer as an
example:
[11936] 5- b1s_handler: OPTIONS /b1s/v1/Login from 10.58.81.2

[11936] 6- b1s_handler: POST /b1s/v1/Login from 10.58.81.2

[11936] 7- b1s_handler: OPTIONS /b1s/v1/Items from 10.58.81.2

[11936] 8- b1s_handler: POST /b1s/v1/Items from 10.58.81.2

3.20 Ping Pong API

As of SAP Business One 9.3 patch level 10, version for SAP HANA, Service Layer provides a new Ping Pong API
method which can improve debugging, support, network testing and component monitoring. The purpose of this
API is to provide a direct response from the Apache server so that you can eliminate SAP Business One internal
processing time from any network performance debugging. (This is different from all other Service Layer APIs
which are passed through to B1 core for processing before returning a result). In response to a PING request, the
Apache server (load balancer or node) will respond directly with a simple PONG response.

This API could be used to fulfill the following scenarios:
· Isolate network latency from SAP Business One processing latency
· Check server time accuracy
· Monitor or debug Service Layer API availability
· Monitor load balancer and nodes separately (important for multi-server deployment)

 Example
The following scenarios are some examples of how to use the Ping Pong API:
o Scenario 1 - No endpoint specified, load balancer will respond

Request:
https://<ServerName/IP>:<Port>/ping/

Response:
HTTP/1.1 200 OK

{ "message": "pong", "sender": "load balancer", "timestamp":
"1555998764.740"}

o Scenario 2 - Ping Service Layer load balancer
Request:
https://<ServerName/IP>:<Port>/ping/load-balancer

Response:
HTTP/1.1 200 OK

{ "message": "pong", "sender": "load balancer", "timestamp":
"1555998785.080"}

Working with SAP Business One Service Layer
Consuming SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 141

o Scenario 3 - Specified node will respond
Request:
https://<ServerName/IP>:<Port>/ping/node/1

Response:
HTTP/1.1 200 OK

{ "message": "pong", "sender": "node1", "timestamp":
"1554363811.386"}

o Scenario 4 - Specified node will respond
Request:
https://<ServerName/IP>:<Port>/ping/node/2

Response:
HTTP/1.1 200 OK

{ "message": "pong", "sender":"node2", "timestamp": "1552263107.648"}

o Scenario 5 - No node specified, node 1 will respond
Request:
https://<ServerName/IP>:<Port>/ping/node

Response:
HTTP/1.1 200 OK

{ "message": "pong", "sender": "node1", "timestamp":
"1555998837.832"}

o Scenario 6 - Node 4 is down
Request:
https://<ServerName/IP>:<Port>/ping/node/4

Response:
HTTP/1.1 503 Service Unavailable

{ "message": "Service Unavailable"}

o Scenario 7 - Node 5 does not exist
Request:
https://<ServerName/IP>:<Port>/ping/node/5

Response:
HTTP/1.1 503 Service Unavailable

{ "message": "node 5 does not exist", "sender": "load balancer",
"timestamp": "1554363934.431"}

142
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Configuring SAP Business One Service Layer

4 Configuring SAP Business One Service Layer

The installation wizard sets the common configuration options when you install the Service Layer load balancer or
balancer members. The configuration options are in the configuration file conf/b1s.conf.

4.1 Configuration Options for Service Layer

You can specify the configuration options to control the behavior of the service in the file <Installation
Directory>/ServiceLayer/conf/b1s.conf. The file is in the JSON format and the options are case-sensitive.
Once you save the changes, all configuration options take effect immediately.

 Note
For 9.1 PL00-PL03, the file path is <Installation
Directory>/ServiceLayer/b1s/modules/b1s.conf.
The configuration file applies only to local Service Layer components. If you have installed some load
balancer members on different machines from the load balancer, you must ensure a copy of the schema
file exists also on each member machine.

Server Connection Options

Option Type Description and Default Values

Server String The SAP HANA instance.
Default value is 127.0.0.1:30015.

DbUserName

DbPassword

String The user name and password for the SAP HANA database
instance. Generally, DbUserName and DbPassword are encrypted
in b1s.conf unless DbUserName="SYSTEM" or "sa" - then
Service Layer doesn't perform the decryption on the 2 fields
Default value is: SYSTEM and manager respectively.
As of 9.1 patch level 06, these two options are optional and NOT
recommended to set, because Service Layer can get them from
the SLD server. They are used only when the SLD server does not
work.

License Server String Default value is 127.0.0.1:40000.
This option takes effect as of 9.1 patch level 05 for working with
the license server and the SLD server. The license server and the
SLD server share the same address.

SessionTimeout Integer Measured by minutes. Defines the timeout period for each
session.
Default value is 30 (minutes).

Working with SAP Business One Service Layer
Configuring SAP Business One Service Layer

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 143

Other Options

Option Type Description and Default Values

ExperimentalMet
adata

Boolean Default value is False.
By default, only a subset of entities and actions is exposed.
If this option is True, the metadata returns the full set of entities and
actions. However, we do not recommend that you set this option to True,
for it has not been tested yet. We cannot guarantee that the feature
currently works exactly as intended and will not be changed in the future.

WCFCompatible Boolean Default value is False.
If the value is set to True, the Microsoft WCF component can consume
Service Layer. The application works around some limitations of WCF and
the application behavior is as follows:
· EnumType is replaced by Edm.String, since EnumType is not

supported by WCF in metadata.
· The property name cannot be the same as the type name. For example,

BatchNumber.BatchNumber is automatically renamed to
BatchNumber.BatchNumberProperty.

· Use type Edm.DateTime instead of Edm.Time, as Microsoft .net does
not have a Time type and uses TimeSpan instead, which is not
compatible with SAP Business One.

· As of SAP Business One 9.1, version for SAP HANA patch level 10, the
Navigation and Association parts of the metadata are exposed to
WCF.

MetadataWithout
Session

Boolean Default value is False.
To get metadata, you must first log in and then request metadata in the
same session, which means the HTTP request must contain the
B1SESSION cookie item returned by the login request.
If this option is set to True, you can get metadata anywhere after you log in
to the service. Internally, Service Layer takes one of the existing sessions
for the metadata request.

 Note
This option might not work if Service Layer is installed as cluster
mode (load balancer + load balancer members). Refer to chapter
FAQ for details.

PageSize Integer Defines the page size when paging is applied for a query.
Default value is 20.

Schema String Available as of 9.1 patch level 03.
Default value is empty.
The value is a file name under the conf folder, which defines the required
properties for each type in metadata. For more information, see User-
Defined Schemas.

CorsEnable Boolean Available as of 9.1 patch level 08.

144
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Configuring SAP Business One Service Layer

Option Type Description and Default Values

Default value is false. It functions as a switch to enable CORS (Cross Origin
Resource Sharing).
If this item is set to true, Service Layer will check the value of
CorsAllowedOrigins.

CorsAllowedOrig
ins

String Available as of 9.1 patch level 08.
Default value is empty ("").
This item takes effect only if CorsEnable is true. It is a semi-colon-
separated string list where each string is a representation of a trusted
origin. For example:
"CorsAllowedOrigins":"http://host1:8080;https://host2:844
3"

CorsAllowedOrigins can also be configured as "*" to support requests
from all origins. However, in production environments, it is not
recommended due to security issues.

CorsAllowedHead
ers

String Available as of 9.2 patch level 07.
Default value is ("content-type, accept").
This item takes effect only if CorsEnable is true. It is a comma-separated
string list where each string is a representation of a request header name.
For example:
"CorsAllowedHeaders":"content-type, accept, B1S-PageSize"

4.2 Configuration by Request

Except for the connection options, Service Layer supports limiting all configuration options to the request level.
You can set the Service Layer-customized HTTP header to overwrite the settings in b1s.conf only for the current
request.
To configure your settings for the current request, you should use the following format:
B1S-<configuration-item-name>: <value>

For example:
· B1S-WCFCompatible: True

· B1S-PageSize: 100

 Note
This feature is available in SAP Business One 9.1 patch level 01 and later.

Working with SAP Business One Service Layer
Limitations

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 145

5 Limitations

This section lists the limitations of SAP Business One Service Layer.

5.1 OData Protocol Implementation Limitations

In the OData protocol implementation perspective, the Service Layer has the following limitations:
· OData Version 1.0 and OData Version 2.0 are not supported.
· Request/Response of XML format is not supported for the general entity CRUD operations.
· Accessing the property of a complex type is not allowed (details in section Retrieving Individual Properties).
· Managing values and properties directly is not supported.
· OData-batch: rollback, an OData batch operation, is not supported.
· Metadata option odata=fullmetadata for OData version 3 is not supported.
· Metadata option odata.metadata=full for OData version 4 is not supported.
· NavigationProperty in metadata is enabled for OData Version 3 only (not enabled for OData Version 4).
· OData-query: arithmetic operators (for example, add/sub/mul/div/mod) in OData queries are not supported

yet.
· OData-query: some OData query functions are not supported yet, for example, data functions, math

functions, type case functions, string functions. For details of these functions, see http://docs.oasis-
open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html.

5.2 Functional Limitations versus SAP Business One DI API

Compared to the functionalities of SAP Business One DI API, Service Layer has the following limitations:
· Business object RecordSet (direct SQL) is not supported.
· Service Layer does not support the operation of ImportFromXML and ExportToXML.
· Newly created UDO/UDF/UDT is not accessible unless Service Layer is restarted.
· User transactions are not supported. There is no DI-like operation StartTransaction/EndTransaction.

Transactions are internally used in each request (including OData batch request), but they cannot cross
requests.

 Note
Service layer does not support JSONP, since this feature is optional.

http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html

146
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
High Availability and Performance

6 High Availability and Performance

6.1 High Availability and Load Balancing

In the context of Web-based mobile-accessible applications, providing highly available services becomes
increasingly important. Service Layer is well-designed and thoroughly tested to ensure that it will be continuously
operational for a significant length of time in a production system.
By default, Service Layer installs Apache Multi-Processing Modules (MPMs) and is configured as a load-balancing
cluster. A central load balancer distributes HTTP loads amongst its nodes according to the number of requests. In
addition, Service Layer implements sticky sessions to avoid an unnecessary login, which is considered a heavy job
in SAP Business One, because same session requests will always be forwarded to the same working node. Those
working nodes can be deployed in a clustered system, where hardware and software redundancy helps to scale
performance and provide high availability.

In an exceptional case, if the load balancer detects that one of its nodes has failed, it forwards subsequent
requests to another valid node. The receiving node validates the session through the shared session info stored in
the database. If valid, the receiving node automatically logs the user in, without interrupting the user actions or
asking for user credentials. End-users will not notice the internal node failure, other than in a slight delay of the
system response.

Working with SAP Business One Service Layer
High Availability and Performance

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 147

6.2 Load Test Benchmarking

Performance testing was conducted for the purpose of determining concurrent transaction capacity with the
condition of reasonable response time for 90% of all transactions. Testing was done on a standard installed
environment with a set of configuration options, including CPU core numbers used by SAP HANA, CPU core
numbers used by Service Layer, number of concurrent requests, maximum working thread number in each
Service Layer instance, and so on. Concurrent testing began with user login and comprised creating an order with
20 lines, copying the order to a delivery, and finally copying the delivery to an invoice. One thing to note is that,
although the three documents were posted separately, all were counted as one transaction when calculating the
transactions per second (tps). The correctness of posted transactions was checked after the test in order not to
affect the throughput test result. Moreover, the SAP HANA log was saved to a fast-IO disk, such as a solid state
disk (SSD), to maximize the performance of SAP HANA.

No SAP HANA
CPU Cores

Service Layer
CPU Cores

Number of
Concurrent
Requests

Concurrent
Throughput (tps)

Average Response Time in
Seconds
(Order/Delivery/Invoice)

1 32 10 60 2.6 3.9/18.4/8.0

2 32 10 40 2.7 3.2/10.1/6.3

3 32 10 20 0.9 4.2/9.4/6.9

4 32 4 40 1.5 4.2/10.6/7.1

5 32 2 40 0.9 7.8/18.9/13.9

6 80 15 60 6.7 1.3/3.6/3.1

According to the above test data, the highest concurrent throughput reaches 6.7 with a good response time on
each kind of document. The final test result also shows that concurrent throughput is mainly affected by the
following factors:
· Increasing the number of concurrent requests will gradually increase tps, but will reach the limit at 40

concurrent requests, where the benefit begins to diminish and response time become worse.
· Increasing Service Layer CPU cores will improve tps, for example, if you increase CPU cores from 4 to 10, the

tps roughly doubles.
· Adding more CPU cores to Service Layer will eventually overwhelm the SAP HANA server; therefore, a larger

multi-processor SAP HANA server is recommended. For example, in the last row, after increasing SAP HANA
CPU cores from 32 to 80, the concurrent throughput increases significantly from 2.7 to 6.7.

148
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
FAQ

7 FAQ

1. What are the differences between Service Layer and other SAP Business One extension APIs, such as DI API
and DI Server?
Service Layer is built on the DI core technology, which is also the foundation of DI API and DI Server.
Therefore, all three extension APIs share similar business object definitions. However, their differences are
significant:
o DI API derives from Microsoft COM technology and fits best in the Windows native environment;
o DI Server targets SOAP-based data integration scenarios and prefers Web-services architecture;
o Service Layer is an OData-compliant data service with a smoother learning curve, which enables easy

Web Mashup, or effortless add-on development in various languages (Java, JavaScript, .NET) using 3rd-
party libraries. For a list of all OData client libraries, refer to http://www.odata.org/libraries/. Service
Layer is also a full-featured web application server with capabilities of high availability and scalable
performance.

2. Service Layer is OData-compliant and RESTful, what are the other implications of moving to such Web-
services architecture?
Service Layer provides lightweight and faster results and simple transactions (for example, CRUD
operations). Querying objects is just a matter of changing URI in a uniform fashion. Batch operation is to
support advanced transaction scenarios where multiple requests need to be applied in an atomic way.
Service Layer may not be a good choice to implement complex or distributed transactions where server-side
state management is a must-have requirement.

3. Why does Service Layer support two types of update?
The two types of update differ in the HTTP verb that is sent in the request:
o A PUT request indicates a replacement update. All property values specified in the request body are

replaced. Missing properties are set to their default values.
o A PATCH request indicates a differential update. Only exactly those property values in the request body

are replaced. Missing properties are not altered.
In most cases, Patch request is the recommended approach to update object data.

4. How do I get metadata anonymously?
You use Microsoft WCF libraries to consume Service Layer; however, you cannot import Service Layer into
Microsoft Visual Studio .NET as an external web service because Service Layer requires login first. To work
around the login, do the following:

1. Set the configuration option MetadataWithoutSession to true. For more information, see
Configuration Options for Service Layer.

2. Log in to the service node from where you want to get metadata.
If Service Layer is installed in balancer mode (cluster mode), please directly log in to a specific load
balancer member instead of load balancer, and then you can correctly get metadata from this member
anywhere.
For example, if the service layer is installed in balancer mode like this:
(load balancer) https://hanaserver:50000/b1s/v1

(load balancer member) http://hanaserver:50001/b1s/v1

http://www.odata.org/libraries/

Working with SAP Business One Service Layer
FAQ

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 149

(load balancer member) http://hanaserver:50002/b1s/v1

(load balancer member) http://hanaserver:50003/b1s/v1

In this case, you should first log in to one specific load balancer member, such as 50002:
POST http://hanaserver:50002/b1s/v1/Login

3. Get the metadata from this member anywhere:
GET http://hanaserver:50002/b1s/v1/$metadata

5. What if my HTTP client does not support the PATCH method?
As of 9.1 patch level 04, you can use the POST method to override the PATCH method. To do so, use the POST
method and specify in the HTTP header X-HTTP-Method-Override the method to be overridden. For
example, the following two requests are equal:
o PATCH /Orders(1)

o POST /Orders(1)

X-HTTP-Method-Override: PATCH

Note that the POST method can also override the PUT, MERGE, and DELETE methods.
6. How to use non-admin Database user for Service Layer?

By default, Service layer uses the database superuser "SYSTEM" for the DB connection. It's not
recommended in the production environment.
Please create a new user, and grant with proper privileges on the B1 Common DB and the Company DB he
connects to, like this:
GRANT ALTER,CREATE ANY, DEBUG, DELETE, EXECUTE, INDEX, INSERT, REFERENCES, SELECT,
TRIGGER, UPDATE

on SCHEMA "SBOCOMMON" to {username} WITH GRANT OPTION;

GRANT ALTER,CREATE ANY, DEBUG, DELETE, DROP, EXECUTE, INDEX, INSERT, REFERENCES,
SELECT, TRIGGER, UPDATE

on SCHEMA "{CompanyDbName}" to {username} WITH GRANT OPTION;

(Replace {username} and {CompanyDbName} for yours)
7. Does the service auto start with system?

Yes. Service Layer is installed as a series of Linux services named b1s and b1s<port>, you can check those
services via this command (run as root user):
chkconfig | grep b1s

On my environment it returns:
b1s off

b1s50000 on

b1s50001 on

b1s50002 on

b1s50003 on

sapb1servertools on

b1s50000 is for the load balancer and others, such as 50001~50003, are for the 3 service nodes. "on" means
the service is able to start automatically with the system.
You can turn it off for each node:
chkconfig b1s50000 off

150
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
FAQ

chkconfig b1s50001 off

chkconfig b1s50002 off

chkconfig b1s50003 off

Of course you can turn on it again:
chkconfig b1s50003 on

8. Does it work if SAP HANA client is not installed at the default location?
By default, SAP HANA client x64 version is installed at /usr/sap/hdbclient. As of 9.1 patch level 04, Service
layer can work even if SAP HANA client is not installed at the default location.
Note: This is done by detecting SAP HANA client in this file:
/var/opt/.hdb/{hostname}/installations.client

In prior versions, please work around this issue by creating a symbol link at the default location to your new
location, e.g.
mkdir /usr/sap

ln -s /your/path/hdbclient /usr/sap/hdbclient

Or add the HANA client path in the system path: find file /etc/ld.so.conf, append your path at the end and
run:
ldconfig

Working with SAP Business One Service Layer
Appendix I: Service Layer versus DI API

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 151

8 Appendix I: Service Layer versus DI API

This section explains the differences in how to invoke the APIs to finish the corresponding functionalities in SAP
Business One Service Layer versus in SAP Business One DI API.
The APIs fall into different categories in terms of the operations for entity CRUD, Transaction, Query, Company
Service and UDO.

8.1 CRUD APIs

We take the object Order as a typical example to illustrate how to invoke CRUD APIs.

8.1.1 Creating Entities

DI API

SAPbobsCOM.Company oCompany;

...

SAPbobsCOM.Documents order =
(Documents)oCompany.GetBusinessObject(BoObjectTypes.oOrders);

order.CardCode = "c001";

order.DocDate = DateTime.Today;

order.DocDueDate = DateTime.Today;

//Add items lines

order.Lines.ItemCode = "i001";

order.Lines.Quantity = 1;

order.Lines.TaxCode = "T1";

order.Lines.UnitPrice = 100;

order.Lines.Add();

//Add this newly created order

int retCode = order.Add();

152
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Appendix I: Service Layer versus DI API

Service Layer

POST /Orders

{

"CardCode": "c001",

"DocDate": "2014-04-01",

"DocDueDate": "2014-04-01",

"DocumentLines": [

{

"ItemCode": "i001",

"UnitPrice": 100,

"Quantity": 1,

"TaxCode": "T1"

}

]

}

8.1.2 Retrieving Entities

DI API

SAPbobsCOM.Documents order =
(Documents)oCompany.GetBusinessObject(BoObjectTypes.oOrders);

bool bRet = order.GetByKey(2);

if (bRet)

{

 Console.WriteLine(order.GetAsXML());

}

Service Layer

GET /Orders(2)

Working with SAP Business One Service Layer
Appendix I: Service Layer versus DI API

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 153

8.1.3 Updating Entities

DI API

SAPbobsCOM.Documents order =
(Documents)oCompany.GetBusinessObject(BoObjectTypes.oOrders);

order.GetByKey(2);

order.Comments = "New comments";

order.Update();

Service Layer

PATCH /Orders(2)

{

 "Comments":"New comments"

}

8.1.4 Deleting Entities

DI API

SAPbobsCOM.Documents order =
(Documents)oCompany.GetBusinessObject(BoObjectTypes.oOrders);

order.GetByKey(2);

order.Remove();

Service Layer

DELETE /Orders(2)

154
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Appendix I: Service Layer versus DI API

8.2 Company Service APIs

We take the objects GetCompanyInfo and UpdateCompanyInfo as examples to show how to invoke company
service APIs.

DI API

GetCompanyInfo
SAPbobsCOM.CompanyService companyService = oCompany.GetCompanyService();

SAPbobsCOM.CompanyInfo companyInfo = companyService.GetCompanyInfo();

Console.WriteLine("initial: company version:{0}, company name: {1}, company name:
{2},",

 companyInfo.Version, companyInfo.CompanyName,

companyInfo.AutoCreateCustomerEqCard);

UpdateCompanyInfo
...//following the above code snippet

companyInfo.AutoCreateCustomerEqCard = BoYesNoEnum.tYES;

companyService.UpdateCompanyInfo(companyInfo);

companyInfo = companyService.GetCompanyInfo();

Console.WriteLine("updated: company version:{0}, company name: {1}, company name:
{2},",

 companyInfo.Version, companyInfo.CompanyName,
companyInfo.AutoCreateCustomerEqCard);

Service Layer

GetCompanyInfo
POST /CompanyService_GetCompanyInfo

UpdateCompanyInfo
POST /CompanyService_UpdateCompanyInfo

{

 "CompanyInfo": {

 "Version": 910160,

 "EnableExpensesManagement": "tYES",

...

Working with SAP Business One Service Layer
Appendix I: Service Layer versus DI API

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 155

 "AutoCreateCustomerEqCard": "tYES",

 ...

 }

}

 Note
This kind of APIs in Service Layer is called FunctionImport or Action in OData terminology.

8.3 Transaction APIs

Service Layer does not explicitly provide APIs about transaction because OData protocol is stateless. However,
the batch request can be posted to perform the comparable functionality.

DI API

oCompany.StartTransaction();

SAPbobsCOM.Items items = oCompany.GetBusinessObject(BoObjectTypes.oItems);

items.ItemCode = "item_001";

items.ItemName = "item_001_name";

items.Add();

if (items.GetByKey("item_001"))

{

items.ItemName = "item_001_name new";

items.Update();

oCompany.EndTransaction(BoWfTransOpt.wf_Commit);

}

else

{

oCompany.EndTransaction(BoWfTransOpt.wf_RollBack);

}

Service Layer

POST /$batch

156
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Appendix I: Service Layer versus DI API

Content-Type: multipart/mixed;boundary=batch_36522ad7-fc75-4b56-8c71-56071383e77b

--batch_36522ad7-fc75-4b56-8c71-56071383e77b

Content-Type: multipart/mixed;boundary=changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

Content-Type: application/http

Content-Transfer-Encoding: binary

Content-ID: 1

POST /b1s/v1/Items

Content-Type: application/json

{"ItemCode":"item_001", "ItemName":"item_001_name"}

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd

Content-Type: application/http

Content-Transfer-Encoding: binary

Content-ID: 2

PATCH /b1s/v1/Items('item_001')

Content-Type: application/json

{"ItemName":"item_001_name new"}

--changeset_77162fcd-b8da-41ac-a9f8-9357efbbd--

--batch_36522ad7-fc75-4b56-8c71-56071383e77b--

 Note
The first two lines indicate that this request is a batch request and the request header should be set to
'Content-Type: multipart/mixed;boundary=batch_36522ad7-fc75-4b56-8c71-56071383e77b'.
The remaining part is the exact batch body.
o Multiple operations in the batch body should be enclosed in a change set so as to be treated as an

atomic operation.
o The batch request does not provide a chance for clients to rollback transactions. If all operations are

successful, the batch automatically performs this transaction.
o You can enclose complex business logic in one transaction via DI API, while you cannot do it via

Service Layer.
For more information about batch specifications, see http://www.odata.org/documentation/odata-
version-3-0/batch-processing/.

http://www.odata.org/documentation/odata-version-3-0/batch-processing/
http://www.odata.org/documentation/odata-version-3-0/batch-processing/

Working with SAP Business One Service Layer
Appendix I: Service Layer versus DI API

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 157

8.4 Query APIs

DI API exposes the object Recordset to execute native SQL to implement a query, while Service Layer makes use
of OData query to finish the equivalent functionality.

DI API

SAPbobsCOM.Recordset oRecordSet =
oCompany.GetBusinessObject(BoObjectTypes.BoRecordset);

oRecordSet.DoQuery("Select \"CardCode\", \"CardName\" from OCRD where \"CardCode\" >=
'C001'");

while (!oRecordSet.EoF)

{

Console.WriteLine("{0}={1},{2}={3}", oRecordSet.Fields.Item(0).Name,
oRecordSet.Fields.Item(0).Value,

oRecordSet.Fields.Item(1).Name, oRecordSet.Fields.Item(1).Value);

oRecordSet.MoveNext();

}

Service Layer

GET /BusinessPartners?$select=CardCode, CardName&$filter=CardCode ge 'C001'

{

 "odata.metadata": "https://hanaserver:50000/b1s/v1/$metadata#BusinessPartners",

 "value": [

 {

 "CardCode": "ce7a456e-ead4-4",

 "CardName": "bb72965f-b076-4a81-859f-a2bde7b5b356"

 },

...

 {

 "CardCode": "ce8da8a1-d674-4",

 "CardName": "cbdb91d7-1a29-4e64-9ce8-0bd0a72704b8"

 }

]

}

158
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Appendix I: Service Layer versus DI API

 Note
The response of Service Layer is in JSON format. If you want to iterate the result set as DI API does, you
have to make use of OData client libraries (for example, WCF).

8.5 UDO APIs

8.5.1 Creating UDOs

You need to perform five steps to create an UDO. The creation process is very similar between DI API and Service
Layer.

DI API

Step 1: Create UDT "MyOrder" as the main table
//Create UDT "MyOrder" as main table

SAPbobsCOM.UserTablesMD udtMyOrder =
(UserTablesMD)oCompany.GetBusinessObject(BoObjectTypes.oUserTables);

udtMyOrder.TableName = "MyOrder";

udtMyOrder.TableDescription = "MyOrderDesc";

udtMyOrder.TableType = BoUTBTableType.bott_Document;

udtMyOrder.Add();

Step 2: Add fields to table "MyOrder"
//Add UDF CustomerName to table "MyOrder"

SAPbobsCOM.UserFieldsMD udfCustomerName =
(UserFieldsMD)oCompany.GetBusinessObject(BoObjectTypes.oUserFields);

udfCustomerName.Name = "CustomerName";

udfCustomerName.Type = BoFieldTypes.db_Alpha;

udfCustomerName.Size = 10;

udfCustomerName.Description = "Customer name";

udfCustomerName.SubType = BoFldSubTypes.st_None;

udfCustomerName.TableName = "@MYOrder";

udfCustomerName.Add();

//Add UDF DocTotal to table "MyOrder"

Working with SAP Business One Service Layer
Appendix I: Service Layer versus DI API

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 159

SAPbobsCOM.UserFieldsMD udfDocTotal =
(UserFieldsMD)oCompany.GetBusinessObject(BoObjectTypes.oUserFields);

udfDocTotal.Name = "DocTotal";

udfDocTotal.Type = BoFieldTypes.db_Float;

udfDocTotal.Description = "Total amount";

udfDocTotal.SubType = BoFldSubTypes.st_Sum;

udfDocTotal.TableName = "@MYOrder";

udfDocTotal.Add();

Step 3: Create UDT "MyOrderLines" as the child table
//Create UDT "MyOrderLines" as child table

SAPbobsCOM.UserTablesMD udtMyOrderLines =
(UserTablesMD)oCompany.GetBusinessObject(BoObjectTypes.oUserTables);

udtMyOrderLines.TableName = "MyOrderLines";

udtMyOrderLines.TableDescription = "My Order lines";

udtMyOrderLines.TableType = BoUTBTableType.bott_DocumentLines;

udtMyOrderLines.Add();

Step 4: Add fields to table "MyOrderLines"
//Add UDF ItemName to table "MyOrderLines"

SAPbobsCOM.UserFieldsMD udfItemName =
(UserFieldsMD)oCompany.GetBusinessObject(BoObjectTypes.oUserFields);

udfItemName.Name = "ItemName";

udfItemName.Type = BoFieldTypes.db_Alpha;

udfItemName.Size = 10;

udfItemName.Description = "Item name";

udfItemName.SubType = BoFldSubTypes.st_None;

udfItemName.TableName = "@MYOrderLINES";

udfItemName.Add();

//Add UDF Price to table "MyOrderLines"

SAPbobsCOM.UserFieldsMD udfPrice =
(UserFieldsMD)oCompany.GetBusinessObject(BoObjectTypes.oUserFields);

udfPrice.Name = "Price";

udfPrice.Type = BoFieldTypes.db_Float;

udfPrice.Description = "Unit price";

udfPrice.SubType = BoFldSubTypes.st_Price;

udfPrice.TableName = "@MYOrderLINES";

160
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Appendix I: Service Layer versus DI API

udfPrice.Add();

//Add UDF Quantity to table "MyOrderLines"

SAPbobsCOM.UserFieldsMD udfQuantity =
(UserFieldsMD)oCompany.GetBusinessObject(BoObjectTypes.oUserFields);

udfQuantity.Name = "Quantity";

udfQuantity.Type = BoFieldTypes.db_Float;

udfQuantity.Description = "Quantity";

udfQuantity.SubType = BoFldSubTypes.st_Quantity;

udfQuantity.TableName = "@MYOrderLINES";

udfQuantity.Add();

Step 5: Register UDO "MyOrder"
SAPbobsCOM.UserObjectsMD udoMyOrder =
(UserObjectsMD)oCompany.GetBusinessObject(BoObjectTypes.oUserObjectsMD);

udoMyOrder.Code = "MyOrders";

udoMyOrder.Name = "MyOrder";

udoMyOrder.TableName = "MyOrder";

udoMyOrder.ObjectType= BoUDOObjType.boud_Document;

udoMyOrder.ChildTables.TableName = "MyOrderLines";

udoMyOrder.ChildTables.ObjectName = "MyOrderLines";

udoMyOrder.ChildTables.Add();

udoMyOrder.Add();

Service Layer

Step 1: Create UDT "MyOrder" as the main table
POST /UserTablesMD

{

 "TableName": "MyOrder",

 "TableDescription": "My Orders",

 "TableType": "bott_Document"

}

Step 2: Add fields to table "MyOrder"
POST /UserFieldsMD

Working with SAP Business One Service Layer
Appendix I: Service Layer versus DI API

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 161

{

 "Name": "CustomerName",

 "Type": "db_Alpha",

 "Size": 10,

 "Description": "Customer name",

 "SubType": "st_None",

 "TableName": "@MYORDER"

}

POST /UserFieldsMD

{

 "Name": "DocTotal",

 "Type": "db_Float",

 "Description": "Total amount",

 "SubType": "st_Sum",

 "TableName": "@MYORDER"

}

Step 3: Create UDT "MyOrderLines" as the child table
POST /UserTablesMD

{

 "TableName": "MyOrderLines",

 "TableDescription": "My Order lines",

 "TableType": "bott_DocumentLines"

}

Step 4: Add fields to table "MyOrderLines"
POST /UserFieldsMD

{

 "Name": "ItemName",

 "Type": "db_Alpha",

 "Size": 10,

 "Description": "Item name",

 "SubType": "st_None",

 "TableName": "@MYORDERLINES"

}

162
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Appendix I: Service Layer versus DI API

POST /UserFieldsMD

{

 "Name": "Price",

 "Type": "db_Float",

 "Description": "Unit price",

 "SubType": "st_Price",

 "TableName": "@MYORDERLINES"

}

POST /UserFieldsMD

{

 "Name": "Quantity",

 "Type": "db_Float",

 "Description": "Quantity",

 "SubType": "st_Quantity",

 "TableName": "@MYORDERLINES"

}

Step 5: Register UDO "MyOrder"
POST /UserObjectsMD

{

 "Code": "MyOrders",

 "Name": "MyOrder",

 "TableName": "MyOrder",

 "ObjectType": "boud_Document",

 "UserObjectMD_ChildTables": [

 {

 "TableName": "MyOrderLines",

 "ObjectName": "MyOrderLines"

 }

]

}

Working with SAP Business One Service Layer
Appendix I: Service Layer versus DI API

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 163

8.5.2CRUD and Query Operations

Once an UDO is created, you can treat it as an ordinary entity. The URL for UDO CRUD and Query operation are
the same as the internal SAP Business One entities.

Creating UDO Entity
POST /MyOrders

{

 "U_CustomerName": "c1",

 "U_DocTotal": 620,

 "MyOrderLinesCollection": [

 {

 "U_ItemName": "item1",

 "U_Price": 100,

 "U_Quantity": 3

 },

 {

 "U_ItemName": "item2",

 "U_Price": 80,

 "U_Quantity": 4

 }

]

}

Retrieving UDO Entity
GET /MyOrders(10)

Querying on UDO Entity
GET /MyOrders?$select=U_CustomerName, U_DocTotal&$filter=U_CustomerName eq 'c1' and
U_DocTotal gt 1000

8.6 UDF APIs

This section demonstrates how to create, retrieve, update, and delete UDFs of an existing entity (for example,
BusinessPartners), and perform relevant operations on entities with the added UDFs.

164
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Appendix I: Service Layer versus DI API

8.6.1 CRUD Operations

DI API

Creating UDFs
SAPbobsCOM.UserFieldsMD udf =
(UserFieldsMD)oCompany.GetBusinessObject(BoObjectTypes.oUserFields);

udf .Name = "u1";

udf .Type = BoFieldTypes.db_Alpha;

udf .Size = 10;

udf .Description = "udf 1";

udf .SubType = BoFldSubTypes.st_None;

udf .TableName = "OCRD";

int retCode = udf .Add();

 Note
OCRD is the main table of BusinessPartners.

Retrieving UDFs
SAPbobsCOM.UserFieldsMD udf =
(UserFieldsMD)oCompany.GetBusinessObject(BoObjectTypes.oUserFields);

string tableName = "OCRD";

int fieldID = 0;//Assume the FieldID of the entity to retrieve is 0

if (udf.GetByKey(tableName, fieldID))

{

 Console.WriteLine("Name = {0}, Description = {1}", udf.Name, udf.Description);

}

 Note
You can get the value of fieldID from the response of creating an UDF.
The entity UserFieldsMD has to be retrieved with a multiple-field-composed key.

Updating UDFs
SAPbobsCOM.UserFieldsMD udf =
(UserFieldsMD)oCompany.GetBusinessObject(BoObjectTypes.oUserFields);

Working with SAP Business One Service Layer
Appendix I: Service Layer versus DI API

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 165

string tableName = "OCRD";

 int fieldID = 0;//Assume the FieldID of the entity to retrieve is 0

 if (udf.GetByKey(tableName, fieldID))

 {

 udf.Description = "New Description";

 udf.Update();

 }

Deleting UDFs
SAPbobsCOM.UserFieldsMD udf =
(UserFieldsMD)oCompany.GetBusinessObject(BoObjectTypes.oUserFields);

string tableName = "OCRD";

 int fieldID = 0;//Assume the FieldID of the entity to retrieve is 0.

 if (udf.GetByKey(tableName, fieldID))

 {

 udf.Remove();

 }

Service Layer

Creating UDFs
POST /UserFieldsMD

{

 "Name": "u1",

 "Type": "db_Alpha",

 "Size": 10,

 "Description": "udf 1",

 "SubType": "st_None",

 "TableName": "OCRD"

}

The response is:
HTTP/1.1 201 Created

{

 "Name": "u1",

 "Type": "db_Alpha",

 "Size": 10,

166
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Appendix I: Service Layer versus DI API

 "Description": "udf 1",

 "SubType": "st_None",

 "LinkedTable": null,

 "DefaultValue": null,

 "TableName": "OCRD",

 "FieldID": 0,

 "EditSize": 10,

 "Mandatory": "tNO",

 "LinkedUDO": null,

 "ValidValuesMD": []

}

Retrieving UDFs
GET /UserFieldsMD(TableName='OCRD', FieldID=0)

 Note
You can get the value of FieldID from the response of creating UDF.
The entity UserFieldsMD has to be retrieved with multiple-field-composed key.

Updating UDFs
PATCH /UserFieldsMD(TableName='OCRD', FieldID=0)

{

 "Description": "New Description",

}

Deleting UDFs
DELETE /UserFieldsMD(TableName='OCRD', FieldID=0)

8.6.2Performing Operations on Entities with UDFs

This section shows how to perform operations on entities (BusinessPartners) with an added UDF (U_u1).

DI API

Creating entity with UDF

Working with SAP Business One Service Layer
Appendix I: Service Layer versus DI API

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 167

SAPbobsCOM.BusinessPartners bp =
(BusinessPartners)oCompany.GetBusinessObject(BoObjectTypes.oBusinessPartners);

bp.CardCode = "bp_001";

bp.CardName = "bp_001_name";

bp.UserFields.Fields.Item(0).Value = "udf value";

bp.Add();

 Note
bp.UserFields.Fields.Item(0) refers to the UDF.

Retrieving entity with UDF
SAPbobsCOM.BusinessPartners bp =
(BusinessPartners)oCompany.GetBusinessObject(BoObjectTypes.oBusinessPartners);

bool bRet = bp.GetByKey("bp_001");

if (bRet)

{

 Console.WriteLine("CardCode = {0}, CardName = {1}", bp.CardCode, bp.CardName);

 string udfName = bp.UserFields.Fields.Item(0).Name;

 string udfValue = bp.UserFields.Fields.Item(0).Value;

 Console.WriteLine("udfName = {0}, udfValue = {1}", udfName, udfValue);

}

Updating entity with UDF
SAPbobsCOM.BusinessPartners bp =
(BusinessPartners)oCompany.GetBusinessObject(BoObjectTypes.oBusinessPartners);

bool bRet = bp.GetByKey("bp_001");

if (bRet)

{

 bp.UserFields.Fields.Item(0).Value = "new UDF value";

 bp.Update();

}

Service Layer

Once an UDF is created, you can treat it as an ordinary property of an entity.

168
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Appendix I: Service Layer versus DI API

Creating entity with UDF
POST /BusinessPartners

{

 "CardCode": "bp_001",

 "CardName": "bp_001_name",

 "U_u1": "udf value"

}

Querying entity with UDF
GET /BusinessPartners?$filter=startswith(U_u1, 'udf ')

Updating entity with UDF
PATCH /BusinessPartners('bp_001')

{

 "CardCode": "bp_001",

 "CardName": "bp_001_name",

 "U_u1": "udf value"

}

Working with SAP Business One Service Layer
Appendix II: Metadata Naming Difference between Service Layer and DI API

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 169

9 Appendix II: Metadata Naming Difference
between Service Layer and DI API

Service Layer is built on top of DI Core and reuses its metadata. Actually, to follow OData protocol, Service Layer
slightly modifies the metadata. The differences are reflected in the following aspects.

9.1 Collection Object Naming Difference

For Service Layer, the collection object metadata can be found by checking /b1s/v1/$metadata while for DI API,
GetBusinessObjectXmlSchema can be invoked to retrieve the metadata.
From the table below, it can be inferred that Service Layer takes more sensible names.

Service Layer DI API

AccountSegmentationsCategories Categories

BPAccountReceivablePaybleCollection BPAccountReceivablePayble

BPFiscalTaxIDCollection BPFiscalTaxID

BPWithholdingTaxCollection BPWithholdingTax

BillOfExchangeTransBankPages BillOfExchangeTrans_BankPages

BillOfExchangeTransDeposits BillOfExchangeTrans_Deposits

BillOfExchangeTransactionLines BillOfExchangeTransaction_Lines

BudgetCostAccountingLines BudgetCostAccounting_Lines

BudgetLines Budget_Lines

BusinessPlaceIENumbers IENumbers

BusinessPlaceTributaryInfos TributaryInfos

CashFlowAssignments PrimaryFormItems

CheckInListParams CheckIns

DocsInWTGroupsCollection DocsInWTGroups

DocumentAdditionalExpenses DocumentsAdditionalExpenses

DocumentInstallments Document_Installments

DocumentLineAdditionalExpenses Document_LinesAdditionalExpenses

DocumentLines Document_Lines

DocumentSpecialLines Document_SpecialLines

170
CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved.

Working with SAP Business One Service Layer
Appendix II: Metadata Naming Difference between Service Layer and DI API

Service Layer DI API

EmployeeAbsenceInfoLines EmployeeAbsenceInfo

EmployeeEducationInfoLines EmployeeEducationInfo

EmployeePreviousEmpoymentInfoLines EmployeePrevEmpoymentInfo

EmployeeReviewsInfoLines EmployeeReviewsInfo

EmployeeRolesInfoLines EmployeeRolesInfo

EmployeeSavingsPaymentInfoLines EmployeeSavingsPaymentInfo

ItemBarCodeCollection ItemBarCodes

ItemCycleCounts ItemCycleCount

ItemDepreciationParameters ItemDepreciationParam

ItemDistributionRules ItemDistributionRule

ItemGroupsWarehouseInfos ItemGroups_WarehouseInfo

ItemLocalizationInfos LocalizationInfos

ItemPeriodControls ItemPeriodControl

ItemPrices Items_Prices

ItemUnitOfMeasurementCollection ItemUnitOfMeasurement

ItemUoMPackageCollection ItemUoMPackage

ItemWarehouseInfoCollection ItemWarehouseInfo

JournalEntryLines JournalEntries_Lines

MaterialRevaluationLines MaterialRevaluation_lines

PaymentAccounts Payments_Accounts

PaymentChecks Payments_Checks

PaymentCreditCards Payments_CreditCards

PaymentInvoices Payments_Invoices

PickListsLines PickLists_Lines

ProductTreeLines ProductTrees_Lines

ProductTreeStages ProductTrees_Stages

ProductionOrderLines ProductionOrders_Lines

ProductionOrdersSalesOrderLines ProductionOrders_SalesOrderLines

ProductionOrdersStages ProductionOrders_Stages

ProgressiveTax_Lines WithholdingTaxCodes_ProgressiveTax_Lines

SNBLinesCollection SNBLines

Working with SAP Business One Service Layer
Appendix II: Metadata Naming Difference between Service Layer and DI API

CUSTOMER
© 2019 SAP SE or an SAP affiliate company. All rights reserved. 171

Service Layer DI API

SalesForecastLines SalesForecast_Lines

SpecialPriceDataAreas SpecialPricesDataAreas

SpecialPriceQuantityAreas SpecialPricesQuantityAreas

StockTransferLines StockTransfer_Lines

StockTransferTaxExtension StockTransfer_TaxExtension

UserPermission UserPermissionItem

WTGroupsCollection WTGroups

WithholdingTaxCertificatesCollection WithholdingTaxCertificates

WithholdingTaxDataCollection WithholdingTaxData

WithholdingTaxDataWTXCollection WithholdingTaxDataWTX

9.2 Business Object Naming Difference

To conform to OData naming convention, Service Layer adopts plural format if the BO name is of singular format.

Service Layer DI API

InventoryGenExits InventoryGenExit

InventoryGenEntries InventoryGenEntry

9.3 Property Naming Difference

To follow OData protocol, Service Layer changes a property name by appending 'Property' if it is the same as its
residing object.

Service Layer DI API

BatchNumber.BatchNumberProperty BatchNumber.BatchNumber

Activity.ActivityProperty Activity.Activity

PeriodCategory.PeriodCategoryProperty PeriodCategory.PeriodCategory

Copyrights, Trademarks, and
Disclaimers

© 2019 SAP SE or an SAP affiliate company. All rights reserved.
No part of this publication may be reproduced or transmitted in any
form or for any purpose without the express permission of SAP SE
or an SAP affiliate company.
SAP and other SAP products and services mentioned herein as well
as their respective logos are trademarks or registered trademarks of
SAP SE (or an SAP affiliate company) in Germany and other
countries. All other product and service names mentioned are the
trademarks of their respective companies. Please see
http://www.sap.com/corporate-
en/legal/copyright/index.epx#trademark for additional trademark
information and notices.
Please see http://www.sap.com/corporate-
en/about/legal/copyright/thirdparty-notices.html for third party
trademark notices.
Please see https://help.sap.com/disclaimer-full for important
disclaimers and legal information.
JAVATM DISCLAIMER
Some components of this product are based on Java™. Any code
change in these components may cause unpredictable and severe
malfunctions and is therefore expressly prohibited, as is any
decompilation of these components.
Any Java™ Source Code delivered with this product is only to be
used by SAP’s Support Services and may not be modified or altered
in any way.
SAP BUSINESS ONE – ADDITIONAL COPYRIGHTS &
TRADEMARKS
DotNetZip, .NET, SQL Server, Visual C++, Visual #, and Windows
Installer are trademarks or registered trademarks of Microsoft
Corporation.
DynaPDF is a trademark or registered trademark of DynaForms
Software for Documents - Jens Boschulte.
EDTFTPJ/PRO is a trademark or registered trademark of Enterprise
Distributed Technologies.
InstallAnywhere and InstallShield are trademarks or registered
trademarks of Flexera Software LLC.
SEE4C (SMTP/POP3/IMAP Email Component Library for C/C++) is
the copyright of MarshallSoft Computing, Inc. MARSHALLSOFT is a
trademark or registered trademark of MarshallSoft Computing, Inc.
Victor Image Processing Library and VIC32 are trademarks or
registered trademarks of Catenary Systems. The Victor Image
Processing Library is copyright material. This includes the source
code, object code, dlls, examples, and documentation. This material
is protected by United States copyright law as well as international
copyright treaty provisions.

http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark
http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark
http://www.sap.com/corporate-en/about/legal/copyright/thirdparty-notices.html
http://www.sap.com/corporate-en/about/legal/copyright/thirdparty-notices.html
https://help.sap.com/disclaimer-full

	Working with SAP Business One Service Layer
	Table of Contents
	1 Introduction
	1.1 About This Document
	1.2 Target Audience
	1.3 About SAP Business One Service Layer

	2 Getting Started
	2.1 System Requirements
	2.2 Architecture Overview
	2.3 Installing SAP Business One Service Layer

	3 Consuming SAP Business One Service Layer
	3.1 Login and Logout
	3.1.1 Session

	3.2 Single Sign-On (SSO)
	3.2.1 SSO via PAOS
	3.2.2 SSO via HTTP-POST

	3.3 Metadata Document
	3.4 Service Document
	3.5 Create/Retrieve/Update/Delete (CRUD) Operations
	3.5.1 Creating Entities
	3.5.2 Retrieving Entities
	3.5.3 Updating Entities
	3.5.4 Deleting Entities
	3.5.5 Create Entity with No Content

	3.6 Actions
	3.7 Query Options
	3.7.1 Get All Entities
	3.7.2 Get Fields of an Entity
	3.7.3 Query Properties of the Enumeration Type
	3.7.4 Query Properties of the Datetime Type
	3.7.5 Query Properties of the Time Type
	3.7.6 Paginate the Selected Orders
	3.7.7 Aggregation
	3.7.7.1 sum
	3.7.7.2 average
	3.7.7.3 max
	3.7.7.4 min
	3.7.7.5 countdistinct
	3.7.7.6 count

	3.7.8 Grouping
	3.7.8.1 Simple Group
	3.7.8.2 Group with Aggregation Method
	3.7.8.3 Group with Aggregation Method and Filter

	3.7.9 Cross-Joins
	3.7.9.1 Cross-Joins with Expand
	3.7.9.2 Cross-Joins with Calculation
	3.7.9.3 Cross-Joins with Aggregation

	3.7.10 Row-Level Filter
	3.7.10.1 Metadata for Query Service
	3.7.10.2 Examples for Query Service

	3.8 SAP Business One Semantic Layer View Exposure
	3.8.1 Views Deployment
	3.8.2 View Exposure Scope
	3.8.3 View Exposure OData Version
	3.8.4 Semantic Layer Service Root
	3.8.5 Semantic Layer Service Metadata
	3.8.6 Semantic Layer View Authorization
	3.8.7 Semantic Layer View Query
	3.8.7.1 Getting All Records from View
	3.8.7.2 Querying View with Query Options
	3.8.7.3 Querying View by Key
	3.8.7.4 Querying View with Placeholders
	3.8.7.5 Querying View with Aggregation

	3.8.8 Customized Views Exposure
	3.8.9 Customized Views Query
	3.8.10 Semantic Layer Basic Authentication

	3.9 Batch Operations
	3.9.1 Batch Request Method and URI
	3.9.2 Batch Request Headers
	3.9.3 Batch Request Body
	3.9.4 Change Sets
	3.9.5 Batch Request Sample Codes
	3.9.6 Batch Response

	3.10 Retrieving Individual Properties
	3.11 Associations
	3.11.1 Metadata Definitions of Associations and Navigation Properties
	3.11.2 Retrieving navigation properties as entity
	3.11.3 Retrieving navigation properties via $expand

	3.12 User-Defined Schemas
	3.12.1.1 Filter Fields

	3.13 User-Defined Fields (UDFs)
	3.13.1 Managing Metadata of UDFs
	3.13.2 CRUD Operations

	3.14 User-defined Tables (UDTs)
	3.14.1 Managing Metadata of UDTs
	3.14.2 CRUD Operations

	3.15 User-Defined Objects (UDOs)
	3.15.1 Managing Metadata of UDOs
	3.15.2 Creating Entity for a UDO
	3.15.3 Retrieving Entity for UDO
	3.15.4 Updating Entity for UDO
	3.15.5 Deleting Entity for UDO
	3.15.6 Canceling/Closing Entity for UDO

	3.16 Attachments
	3.16.1 Setting up an Attachment Folder
	3.16.2 Uploading an Attachment
	3.16.2.1 Attach source file from Linux
	3.16.2.2 Attach source file from Windows

	3.16.3 Downloading Attachments
	3.16.4 Updating Attachment

	3.17 Item Image and Employee Image
	3.17.1 Setting up an Item Image Folder
	3.17.2 Getting an Item Image or an Employee Image
	3.17.3 Updating or Uploading an Item Image
	3.17.4 Deleting an Item Image

	3.18 JavaScript Extension
	3.18.1 JavaScript Parsing Engine
	3.18.2 JavaScript Extension Framework
	3.18.3 JavaScript Entry Function
	3.18.4 JavaScript URL Mapping
	3.18.5 JavaScript SDK
	3.18.5.1 Http Request API
	3.18.5.2 Http Response API
	3.18.5.3 Entity CRUD API
	3.18.5.4 Entity Query API
	3.18.5.5 Transaction API
	3.18.5.6 Exception API
	3.18.5.6.1 Compile Exception
	3.18.5.6.2 Runtime Exception
	3.18.5.6.3 User Exception

	3.18.6 Logging
	3.18.7 JavaScript SDK Generator Tool
	3.18.8 JavaScript Deployment
	3.18.9 Typical User Cases of Applying Script
	3.18.9.1 Complex Transactions
	3.18.9.2 Customized Business Logic (e.g. UDO)

	3.18.10 Consume Script Service from .Net Application

	3.19 Cross Origin Resource Sharing (CORS)
	3.19.1 Enabling CORS
	3.19.2 Enable to Configure Allowed Headers
	3.19.3 CORS process

	3.20 Ping Pong API

	4 Configuring SAP Business One Service Layer
	4.1 Configuration Options for Service Layer
	4.2 Configuration by Request

	5 Limitations
	5.1 OData Protocol Implementation Limitations
	5.2 Functional Limitations versus SAP Business One DI API

	6 High Availability and Performance
	6.1 High Availability and Load Balancing
	6.2 Load Test Benchmarking

	7 FAQ
	8 Appendix I: Service Layer versus DI API
	8.1 CRUD APIs
	8.1.1 Creating Entities
	8.1.2 Retrieving Entities
	8.1.3 Updating Entities
	8.1.4 Deleting Entities

	8.2 Company Service APIs
	8.3 Transaction APIs
	8.4 Query APIs
	8.5 UDO APIs
	8.5.1 Creating UDOs
	8.5.2 CRUD and Query Operations

	8.6 UDF APIs
	8.6.1 CRUD Operations
	8.6.2 Performing Operations on Entities with UDFs

	9 Appendix II: Metadata Naming Difference between Service Layer and DI API
	9.1 Collection Object Naming Difference
	9.2 Business Object Naming Difference
	9.3 Property Naming Difference

